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1 Introduction 

 
HoliDes addresses the design and the development of Adaptive 

Cooperative Systems (AdCoS). These systems are adapting to the 
cognitive abilities of the human operator(s) and facilitate cooperation 

between humans and machines with the goal to enhance safety, to reduce 
the human error risk, and to better support human operators facing too 

complex or critical situations.  
The development of an interactive system is a complex problem, which is 

continuously growing with the evolving technology, i.e. growing 

cooperation between actors in distributed locations, or future application 
of adaptive systems. Further, the more the “intelligence” of the assistive 

systems increases regarding their adaptive abilities and a certain 
autonomy in decision making and actions implementation, the more 

complex is their technical verification and validation, and the more 
human-machine cooperation issues have to be carefully considered. Thus, 

a good Human Factors Design is essential to provide safety in these 
complex systems, especially concerning the human-machine interaction. 

To better support the development of such AdCoS, which are able to 
harmoniously cooperate with humans and to adjust their assistance in 

accordance with the context of use, a Human Centred Design approach is 
crucial. The core objective is to guaranty safety in these complex systems, 

especially concerning the human-machine interaction, by considering both 
their technical efficiency (i.e. is the AdCoS able to efficiently perform the 

task it is in charge to implement or to support?) and their effectiveness, 

which is more related to end users’ needs and expectations (i.e. how 
useful and adequate is the AdCoS regarding the task humans have to 

performed and the situational constraints they have to respect?).  
To facilitate the development of Adaptive and Cooperative Systems, WP2 

provides formal modelling languages, technics and tools that support the 
modelling of AdCoS used in WP6-9. Model-based approaches can be very 

helpful to manage system complexity, because models can be described 
on different levels of abstraction, focused on the relevant information in a 

structured way. One advantage of model-based approaches is that these 
models can be analysed in multiple ways, e.g. they can be checked for 

consistency, safety (formal methods) or efficiency. Moreover, some 
models and tools of WP2 are also used in WP3 to implement the 

adaptiveness of the AdCoS themselves. In addition, some of them are 
employed to guide empirical evaluation methods and design of AdCoS in 

WP5. Other models support their formal verification in WP4. Finally, the 
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models and languages developed in WP2 contribute to the common meta-
model of the HF-RTP in WP1. 

 

Model-Based Design (MBD) is a method for addressing problems 
associated with designing complex systems, and is based on syntactically 

and semantically (e.g. mathematically) defined abstractions of the system 
and the environment, as well as the interactions between them. It 

facilitates developing complex systems, because the models allow easier 
communication and involvement of other experts, due to the graphical 

visualisation of the model, as well as the defined semantic of the model. 
Main benefit and cost saver is probably the code-generation facilities of 

the MBD. In addition, a simulation of the model allows for easier testing 
and thus an improvement of the product quality, while gaining shorter 

development at the same time. 
MBD is widely used in e.g. aeronautics and space domain, but usage could 

be improved in all domains involved in the project. In the current 
industrial practice, there is only poor support for Human Centred Design 

and associated Human Factor Analysis, especially for adaptive and 

cooperative systems. In HoliDes, the MBD for AdCoS, including Human 
Factors aspects, was progressively tackled by defining and/or choosing a 

set of appropriate modelling languages and tools, allowing designers to 
model adaptation as well as human behaviors.  

Figure 1 gives an overview of the three cycles of HoliDes, in which the 
modelling Languages and Tools were progressively developed and used.  

Previous deliverables provided by WP2 presented the modelling 
languages, technics and tools in Cycle I, II and III. 

In this deliverable, the following section will present an overview of the 
“common modelling framework” shared by the WP2 partners at a more 

transversal level.  
Then, in section 3, the different Modelling Technics and Tools developed 

during the project by the WP2 teams, will be presented. All of them were 
already described in detailed in D2.5 and updated in D2.6. Thus, this 

sections aims at briefly recalling their description and then demonstrating 

their final status. 
Finally, the last section will review which Requirements of the MTTs 

developed in WP2 have been achieved. 
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Figure 1: HoliDes Cycled Approach 
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2 Common Modelling Framework 

This section presents an overview of the recent updates implemented in 
WP2 regarding Task Model, Resource Modelling Language, Human-

Machine Cooperation Modelling, Human Operator Models and last but not 
least HMI Interaction Models. 

 
All UML/ecore diagrams in this document follow a certain colour coding for 

the classes:  
- Light Yellow: Normal Classes 

- Grey: Abstract Classes 

- Green: Enumerations 
- Dark Cyan: Class from other Model, i.e. separate diagram 

2.1 Task Model 

The following section describes the final version of the Common Task 

Model for HoliDes, derived from the individual Task Models of the 
partners. There is no significant update from D2.5 and D2.6, despite the 

model has been split up into two packages, one for the task and goal 
hierarchies, and the second one for the rules package.  

 
For a detailed introduction to Task Modelling and the partners individual 

Task Models, please refer to deliverable D2.5.  
 

Figure 2 shows the task package of the Common Task Model of the HF-
RTP V2.0, and Figure 3 shows the rule package of the Common Task 

Model.  

 
Description of elements:  

- TaskModel: Main entrance element that stores and links all model 
information 

- Goal: A state that has to be achieved (e.g. a destination has been 
reached by car). A goal describes the WHAT in the task model.  

- Objective: The objective describes WHY something has to be 
achieved.  

- Task: A definite piece of work assigned to, or expected of an agent 
(human or machine). Describes HOW a Goal can be achieved. Tasks 

can be differentiated into: 
o UserTask: An internal cognitive activity, such as selecting a 

strategy to solve a problem 
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o InteractionTask: User actions that may result in immediate 
system feedback, such as editing a diagram 

o SystemTask: Performed by the application itself, such as 

generating the results of a query 
o AbstractTask: A task that has subtasks belonging to different 

categories, and thus cannot be allocated uniquely using the 
previous three categories 

- Agent: A machine or human that is part of the AdCoS and is 
assigned at least one of the described tasks, details in the 

Cooperation Model 
- Artefact: Link to the resources used by/needed for the task 

- Relation: Describes the relation between two tasks, as described in 
the “RelationType” Enumeration, e.g. if they are running in parallel, 

if either of them is a choice, or if they are interleaving.  
 

 
 

Figure 2: Common Task Model 
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Figure 3: Rule Package - Common Task Model 

Description of elements 

- Rule: Rules can be used to describe on a very detailed level how a 
task is achieved. Each Rule belongs to a Task. There are 4 different 

types of rules:  
o RegularRule:  

 LHS: The Left Hand Side (LHS) of a rule describes the IF 

part 
 Condition: Boolean expression on the environment 

(Artefacts). The rule can be used if the condition is 
true.  

 Retrieve: Retrieves information from the memory 
that is needed for the evaluation of the Condition.  

 RHS: The Right Hand Side (RHS) of a rule describes the 
THEN part 

 TaskDone: A Task is done and removed 
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 Speak: Say something to another agent 
 Motor: Perform an action with the hands or feet, 

e.g. typing, pressing a button, ...  

 Memorize: Store an information in memory for 
later retrieval 

 LookAt: Retrieve a needed information by visual 
perception (triggers eye-movement) 

o ReactiveRule: Rule not associated to a Task, in order to allow 
the description of reactive behaviour (i.e. triggers from 

outside, interruptions) 
o WaitingRule: Active waiting for something  

o PerceptRule: Triggers perception of visual information that is 
needed for the evaluation of a condition. 

 

2.2 Resource Modelling Language 

Figure 4 shows the ecore2 Model of the final version of the HoliDes 
resource model. There is no update of the model from the previous 

version, as described in D2.5. For reference the following text from D2.5 

has been added to describe the resource model.  
 

The main class of the resource model is the abstract Artefact class, 

representing an arbitrary resource. By sub-classing this class, further 
refinements can be made:  

- The SoftwareArtefact class represents any resource that is 

software. Currently there is only a sub-class for User Interfaces 
(class UI), which has to be substituted in future versions with the 

HMI Interaction model from T2.5. 

- The HardwareArtefact class represents any resource that is 

hardware. This has been taken from DCoS-XML. Hardware is 

currently distinguished as DiscreteActuator (e.g. an on-off 

button, gear-shift), ContinuousActuator (e.g. the altitude 

selector of an aircraft’s autopilot), Consumable or Sensors.  

- The EnvironmentalArtefact class represents any resource in the 

environment, e.g. a Space. This is currently not further defined.  

 

                                    
2 Eclipse modelling framework (EMF): http://eclipse.org/emf  

http://eclipse.org/emf
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Figure 4: Resource Model 

 
The Artefact is hierarchical, i.e. a Resource can have children. This allows 

building e.g. a complete cockpit, which consists again of many sub-
resources. While the Artefact class and its subclasses describe the 

functional behaviour of the resource, one can associate a (not yet 
described) Shape with an artefact. These shapes will describe in future 

versions the visual parameters of a resource, primarily location, size, 
colours and form. In order to allow simulation, each artefact is also 

described by a set of attributes which describe the current state of the 
resource. Typically, each artefact is represented as an Object (Resource 

class), which has Attributes of a certain DataType. The MODE shows if the 

attribute is published or consumed by the resource.  

 

2.3 Human-Machine Cooperation Modelling 

The Human Machine Cooperation model adopted by project HoliDes refers 

to Hoc’s framework (Hoc, 2001), conceived on purpose for investigating 
different cooperation situations between human agents and machine 

agents from a human-centered perspective, i.e., by taking into account 
the cognitive aspects coming into play in the different cases. 
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The path towards the selection of the Hoc’s model has been discussed in 
the previous WP2 deliverables (WP2.3, WP2.4, WP2.5, Section 2.3) and 

has been fully described in D2.6, Section 2.3, which is the reference 

document the reader is redirected to for further insights. 
 

As a short summary, the framework envisions that the cooperation 
between the human part and the machine part of the human machine 

system is classified according to two dimensions: the level of cooperation, 
describing the level of the interference management activity in relation 

with the distance from the immediate action and with the elapsed time of 
such an activity, and the cooperation mode, in relation with the typology 

of the cooperation situation (Figure 5)3.  

       

Figure 5. Levels of Cooperation (on the left) and Modes of Cooperation  

(on the right) in Hoc’s framework  

 
Mostly cooperation modes have been investigated and compared in 

literature.  
In the perception mode, the machine part can be seen as an extension of 

the human perceptual system. It makes relevant information more easily 
accessible to the human, without providing interpretation of that 

information. In the mutual control mode, the human is in charge of 
controlling the machine and the machine is in charge of monitoring the 

human activities expressing criticism with respect to “risky” human 

behavior. Further specializations of the mutual control mode are defined. 
Hoc’s framework, indeed, envisions different flavors for the mutual control 

mode. According to the assessment of the associated risks, to express the 
criticism the machine can, for example:  

- Provide warnings (“warning mode”) 
- Provide suggestions (“action suggestion mode”) 

- Forbid the action (“limit mode”), or also 

                                    
3 Please see D2.6, Section 2.3, for details. 
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-  Correct the action (“correction mode”)  
 

Navarro et al. proposed to distinguish between only two main categories 

for the mutual control mode: the “warning mode”, including the 
aforementioned warning mode and action suggestion mode, and the “co-

action” mode, including the limit and correction modes. The reason is that 
between these two main categories there is a clearer difference on the 

plane of human-machine cooperation: while the first two modes just give 
hints and suggestions to the human, the last two modes imply the human 

can no longer ignore the automation recommendation since it has an 
impact on the overall system behavior (Navarro, 2010). 

The function delegation mode, finally, envisions that the human delegates 
part of the control task to the machine. When the delegation is total, the 

cooperation mode becomes the fully automated mode. 
 

Pros and cons associated to the different cooperation modes have been 
explored and are still under evaluation, especially in the Aeronautics and 

Automotive domains, by means of different evaluation approaches.  

 
Comprehensive reviews of cooperation modes analysis and evaluation, 

cited by following more specific works dedicated to ad-hoc cooperation 
implementations, can be found in Navarro (2010) and Hoc (2007). With 

particular reference to the automotive domain, Hoc (2007) reported 
results mainly based on experimental analysis. Lateral control in driving is 

the most considered goal of the human machine system under 
consideration. Suzuki (2003) and Navarro (2006) compared mutual 

control modes in this field. Both shown that a mutual control mode made 
by an auditory and haptic warning (a directed sound coming from the 

direction of the deviation and steering wheel vibration warnings) is 
efficient in reducing response time and maximum lateral deviation in 

critical situations, but the results in that terms in the case of road 
departures are less satisfactory than in lane departures (i.e., there is 

dependency from the context of the critical situation, the more stressful it 

is the lower are the benefit of the cooperation mode). Another cooperation 
mode examined in comparison with the previous one envisioned the use of 

the haptic channel to convey the suggested action to the driver, precisely 
by means of an asymmetric steering wheel vibration in the direction to be 

undertaken to mitigate the lack of centrality. This kind of cooperation 
mode resulted to be less efficient, since steering wheel torque is 

sometimes associated to lateral disturbances, thus causing unintended 
corrective steering reactions opposing the torque, canceling the action 

suggestion. However, sub-symbolic information provisioning, by means of 
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perceptual and sensorimotor interaction, is recommended to be further 
investigated for the communication between the human and the machine, 

because considered preferable in terms of processing efficiency by the 

human, as task analysis can prove in this dynamic contexts, by paying 
particular attention to the technology acceptance and training aspects. 

In the review presented in Navarro (2010), human–machine cooperation 
modes are compared, besides reporting experimental analysis results, also 

by means of the performance comparison of the systems that instantiate 
the different approaches. Driving assistance systems representing 

examples of each considered cooperation modes are presented (e.g., 
vision enhancement systems as example of devices providing perception 

mode cooperation, lane keeping assistance systems and lane departure 
warning systems as examples of mutual control cooperation), and the 

metrics for the evaluation are on the basis of their impact on the driver 
behavior (such as the introduction of negative behavioral adaptation, 

intended as negative behaviors which may occur following the introduction 
of changes to the human machine system which were not expected or 

desired) and their impact on accident data, measured by accident 

reconstruction performed on the basis of a US accident database.  
With reference to mutual control modes, conclusions highlighted that 

several studies indicate the potential safety benefits of warning modes, 
but mainly in simulation environments. Particular attention when adopting 

this cooperation option must be paid to the situation diagnosis (context 
assessment) before the actual onset of the warning. Indeed, at this level 

of human–machine cooperation, negative behavior adaptation can appear 
when there is an over-reliance of the human on the assistance system, 

with the consequent tendency for drivers to await the warning signal 
before adjusting their driving behavior. 

 
Within the HoliDes project, as introduced and motivated in D2.6, Section 

2.3, Hoc’s cooperation framework has been used to represent in the 
context of the project evaluation activities two different cooperation 

models of the Adapted Assistance AdCoS (D9.9, Section 3.1.4), so that 

the evaluation results can be positioned among the aforementioned 
studies (see Figure 6 and Figure 7).  

Indeed, the Adapted Assistance AdCoS HMI developed by REL4 supports 
the driver by controlling his/her behaviour during the lane change 

considering the internal (driver’s intention and distraction) and external 
(road and traffic conditions) context, implementing that way a “mutual 

                                    
4 The reader is redirected to D9.10, Section 3, for the description of the 
AdCoS and of the related evaluation activities. 
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control cooperation mode”. In particular, the driver is provided visually 
with the adapted action to be performed, in terms of “keep your lane” and 

“change lane” indications. In case of risky condition (such as, for example, 

a lane change manoeuvre performing while a vehicle is approaching at a 
high speed from the rear), the adaptive activation of an auditory warning 

is provided in combination with a visual warning indicating the 
recommended action, to the aim of recall the driver attention during the 

manoeuvre (auditory warning + visual warning) (Figure 6).  

 

Figure 6. Cooperation model of the baseline AdCoS (acoustic and visual 

warning) 

 

Figure 7. Cooperation model of the complete AdCoS (acoustic, visual and 

haptic warning explaining the why of the adaptation) 

This cooperation model has been compared with a more sophisticated one 
where the communication of the “why” of the adaptation is envisioned by 

means of a haptic warning (auditory warning + visual warning + haptic 
warning). Directed haptic warnings are provided to the driver by means of 

a vibrating seat to indicate the provenance direction of the approaching 
vehicle that hinders the lane change maneuver from the rear, left and 

right, and by means of the vibration of the steering wheel to indicate a 
possible danger caused by the preceding vehicle (Figure 3). 
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With reference to the HMI, particular attention has been paid to the 
evaluation of subjective metrics related to the driver’s perception of the 

cooperation modes5. HF RTP MTTs used in the evaluation activity have 

been experimental analysis and questionnaires about technology 
acceptance and usability, as well as ad-hoc questionnaires. 

The evaluation activities have been designed according to experimental 
analysis principles, identifying as the baseline condition the cooperation 

model of the baseline AdCoS (Figure 6). The evaluation from the 
subjective perspective has been aimed at comparing, by means of specific 

questionnaires derived from well-known questionnaire models, the 
cognitive effort (perceived workload in terms of fatigue and distraction), 

perceived ease of use, usability, attitudes toward using and intention to 
use in both cases. Results show that both modes do not have significant 

differences in these terms, indicating that, even if the why haptic warning 
represents a cooperation mode the subjects are not used to, it is judged 

acceptable as other more familiar warning alarms. Besides, for the haptic 
warning, a dedicated questionnaire has been created for the assessment 

of the comprehensibility, distinguishability, perceptibility and effectiveness 

of the chosen signal. This specific questionnaire reveals that, even if the 
results of comprehensibility, distinguishability and perceptibility are 

satisfactory, the effectiveness, defined as the property of conveying the 
information about the direction of the danger, does not show the same 

positive results. The novelty of this functionality, unusual for a driver, has 
influenced the effectiveness for half of the participants. This result 

indicates that a learning phase might be needed, in order to let users get 
familiar with the adapted system and its safety mechanism, and 

subsequent tests to measure the improvements should follow. 
 

Finally, the model has been specified in UML for integration into the 
common meta-model, as depicted in Figure 8, where it can be seen that 

the human-machine cooperation model linked to the Agent is 
characterized by a level of cooperation and by a cooperation mode, both 

expressed according to Hoc’s framework.  

 
 

                                    
5 See D9.10 for more information about the evaluation activities. 
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Figure 8: Common Cooperation Model 

 

2.4 Human Operator Models 

There are two types of “Human Operator Models” designed and developed 

in WP2: “Simulation Models”, to be used as the Human Factor component 
into the HF-RTP, and “Monitoring Models”, to be integrated in the AdCoS 

for supporting their adaptiveness. 
 

Synthetically, Simulation Models (like CASCaS, COSMODRIVE and HEE) 
aim to represent human operators in a virtual way into the HF-RTP, in 

order to “simulate” or to “predict” their behaviours, their cognitive status, 
and/or their perceptive strategies when they have to perform a given 

task, in a given situational context (with or without an AdCoS). From 
these simulations or predictions, it is expected to virtually assess or 

predict, since the earliest stages of the AdCoS design process, 
performances, needs, difficulties, or potential human error risks of the 

future end-users of the AdCoS. Beyond the behavioural performance of 
human operators, the objective is also to assess, to predict or to simulate 

their cognitive processes and their mental states (like Situation awareness 

or distraction status), underlying and explaining their performances. 
 

Regarding Monitoring Models (like the MPDN Co-pilot, BAD MoB, 
Cognitive Distraction Classifier, or Pilot Pattern Classifier), the aim is not 

to virtually “simulate” the human operators in the HF-RTP, but to “model” 
them into the AdCoS themselves, in order to “analyse” the activities of 

real humans, to assess their mental state, and/or to evaluate their 
performance, from an “external observer” point of view (i.e. as monitoring 

functions). Synthetically, the aim is to provide on-line or off-line diagnosis 
concerning humans’ perceptive and/or cognitive states (like level of 

distraction or fatigue, for instance), or to evaluate the quality of their 
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performance (e.g. is the observed behaviour adequate or not, according to 
the situational context and the requirements of the task they have to 

perform), in order to support accordingly the adaptive and cooperative 

abilities of the AdCoS.  
 

The different Human Operator Models (of one of these 2 types) developed 

in WP2 will be respectively presented in a detailed way in section 3. 
 

2.5 HMI Interaction Models 

2.5.1 The problem of HMI programming 

For many years specialized programming techniques have been used for 
graphical interactive software running on Personals Computers, wherein 

input was essentially performed using a mouse and a keyboard. 
Nowadays, the diffusion of new human input and output techniques, 

smartphones, tablets, network connections and connected objects has 
widely increased the number of possible combinations for designing 

interactive software. For example, on tablet computers, inputs can now be 
entered using a touch-sensitive surface, a connected object such as an air 

pointer, and internal sensors such as a gyro or an accelerometer. More 

complex interactive applications can be composed of multiple interactive 
software components running in a computer, in the firmware of a touch-

sensitive table top display, in an internet server, and in multiple sensors 
across the world. It thus becomes necessary to provide programming 

techniques that encompass interactive software more widely. 
 

Software components are collections of instructions that can be developed 
independently and assembled to produce software products. The 

interoperability of software components is the ability of two or more 
software components to be interconnected and function properly together. 

Components are interoperable when there is a syntactically correct way to 
combine them without adding an adaptation layer, and when their 

semantics are directly compatible. Interoperability is a major concern in 
the development of software, because it dictates how software 

components can be reused and adapted across multiple applications, and 

when components can be interchanged during the process of designing an 
application. Interoperability is also a favourable condition for innovation, 

because it allows connecting components in ways that had not previously 
been used. For example, driving the position of graphical objects on the 

display of a tablet with the orientation of the said tablet becomes possible 
when the accelerometer is made interoperable with graphics and 
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interchangeable with the touch area. Interoperability and 
interchangeability can also be exploited during the execution of programs, 

producing connections that programmers do not need to describe explicitly 

and exhaustively. For instance, a game can be programmed to change 
randomly during a session which input device the user must use to control 

an object, or which transformation law is applied to the input. 
 

Traditional programming languages, such as C, C++, Lisp or Java, have 
been derived from programming languages focused on computation, by 

adding features that favour interoperability. For example, functional 
programming languages define functions as the foremost category of 

software component, and even treat data variables as functions with no 
arguments. This recursive architecture facilitates the creation of 

interoperable components in software where the role of each individual 
component is to implement a part of the computation of a global result. 

Similarly, by gathering computation and data in objects, object-oriented 
languages facilitate the interoperability of components in software where 

each individual component must store data in order to contribute to the 

global computation. Object-oriented languages also favour interoperability 
and reuse by supporting class inheritance. For more complex situations, 

Design Patterns have been proposed as additional methods for 
interconnecting software components whose relationships are 

incompletely described by function calls or inheritance relations. 
 

Interactive software differs from computation-oriented software in several 
ways that impact software architecture. In terms of execution, 

computation programs have a start and an end, and execution consists of 
steps and loops toward the end. In contrast, interactive software waits for 

inputs and triggers reactive behaviours or computations depending on the 
inputs received. Interactive software also differs in terms of data 

management. Maintaining component state and data values is a central 
concern in interactive software, whereas it is often considered as a side 

effect in computation software. Interactive software also exhibits a wider 

variety of how software components are combined. In computation-
oriented software, the relation between a function and its arguments has 

been proved as a sufficient means of combination for most situations. 
Alternatively, imperative programming languages provide a few control 

structures (sequence, loops and tests) that can be used to interconnect 
programming instructions in computation programs. In interactive 

software, a large number of additional situations can be present. For 
instance, graphical components can be grouped in scene graphs, 

animations can be organized to be executed in parallel, graphical objects 
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can be associated to the various states of dialogue components, 
instructions can be defined to as to be executed when an external event 

occurs, the visual properties of a graphical object can be defined to vary 

continuously with the values of data measured in the physical 
environment. 

 
Traditional programming languages have received extensions to support 

the execution of interactive software. For example, waiting functions 
support execution control by external inputs, and threads support parallel 

execution of actions. With these extensions, they theoretically support the 
development of interactive software.  However, the increase of possible 

inputs, states and combinations of components dramatically increases the 
number of possible executions of a given application. If this multiplicity of 

possible executions is programmed using the usual control structures, 
software complexity increases: any modification of the program behaviour 

requires changes in multiple components, thus restraining the ability to 
make choices after the initial design phase.  

Along with this increase in software complexity, the interoperability of 

software components tends to decrease, and software development and 
validation become long, costly and prone to errors. It also becomes 

difficult to analyse the properties of software at the appropriate level of 
abstraction, and only certain classes of interactive software can undergo 

the software certification processes required in some industrial fields. It 
also becomes difficult to design programming tools that facilitate software 

development, because there are no visual representations that 
appropriately capture the structure of software. 

 
Various software patterns have been proposed to reduce the complexity of 

interactive software developed with traditional programming languages. 
Each pattern addresses one cause of complexity.  The most common 

software pattern is the call back function and its variants such as the 
Inversion of Control pattern and the Signal/Slot pattern, which are aimed 

at limiting the complexity induced by external control. In this pattern, a 

programmer can register a given function to that it is called when some 
conditions are met, such as the occurrence of a given type of external 

input. In some implementations of this pattern, the call-back function is 
passed a data structure named “event” that contains the information 

about what caused the call. 
 

Various software patterns have been proposed to curb software 
complexity by organizing software components according to their roles 

and defining how they can be combined. For example, with the Model-
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View-Controller pattern, application components are made of three sub-
components that are respectively in charge of managing the data and the 

computation, visualizing the data, and managing user input. The 

Presentation-Abstraction-Control and Model-View-View Model patterns 
have similar structures. Extended scene graphs are another class of 

patterns, derived from graphical scene graphs, in which various kinds of 
non-graphical software components can be added as nodes of the graph, 

so as to align the software architecture of the application on its graphical 
structure. 

 
Other patterns have been proposed to organize control flows in interactive 

software, and compensate the limitations of control structures provided by 
programming languages. For example, (Harel 1987) proposes Statecharts, 

hierarchical state machine components that can be combined to describe 
interactive systems. (Myers 1990) describes a state machine component 

that can be adapted to program interaction in various kinds of software 
components. Transitions between states are performed at the occurrence 

of certain events, and the appearance and behaviour of software depends 

on said state of software. (Dragicevic 2004) proposes a data-flow system 
that can be used to program input management. (Nigay 1993) describes a 

multimodal fusion pattern for combining events and states from multiple 
inputs. (Sottet 2007) proposes a pattern for managing the adaptation of 

software to changes in the computing platform and the execution context.  
 

However, each of these solutions addresses only one cause of complexity, 
and in most interactive software they need to be combined to address all 

the causes. This constitutes a source of heterogeneity in the structure of 
software, because these patterns are not interoperable and components 

created with them are neither interoperable nor interchangeable. For 
example, value changes in a data-flow system cannot be directly used as 

an event in a call-back system or a transition in a state machine. 
Adaptation code must be written to combine them, using the basic 

mechanisms provided by each programming language, and this introduces 

additional heterogeneity. This is unsatisfactory in terms of interoperability 
and introduces new complexity, with all the consequences described 

earlier. 
 

Partial solutions have been proposed to make these software patterns 
interoperable. For example, (Chatty 1994) proposes a method for 

combining state machines and data flows, in which the configuration of 
data flows changes when state changes. (Appert 2008) proposes another 

method for combining state machines and data flows, using Java code to 



 

HoliDes 

Holistic Human Factors Design of 

Adaptive Cooperative Human-
Machine Systems 

 

 

26/09/2016 Named Distribution Only 

Proj. No: 332933 

Page 24 of 104 

 

perform the adaptation. (Elliot 1997) proposes Functional Reactive 
Programming, an alteration of the execution semantics of functional 

languages that allows exploiting the same syntax for expressing both 

traditional computation and data flows. (Chatty 2004) discloses an 
application of extended scene graphs for assembling graphics and 

heterogeneous behaviour components in a homogeneous fashion. 
 

None of the above solutions guarantees that any software application can 
be created using a single set of homogeneous and interoperable 

components. In addition, most of these solutions are dedicated to 
graphical interactive software, and none are extensible enough to 

introduce new control structures as required by new interaction modalities 
and new interaction styles. All require the use in programs of instructions 

from a traditional programming language that provide missing control 
structures, architecture patterns, or even functionality, with all the 

consequences described earlier in terms of complexity, interoperability, 
reuse, certification, etc.  

 

Dedicated languages have been proposed to program classes of 
interactive software using homogeneous components. For example, the 

XUL, XAML and QML languages propose recursive architectures for 
assembling graphical components in user interfaces. However, they 

cannot easily be extended to other uses than graphical user interfaces, 
they provide a limited range of control structures, and the applications 

and interactions that can be produced with them are stereotyped.  
Producing non-WIMP (windows, icons, menus, pointing) applications with 

them requires the use of a general-purpose language, and they cannot be 
used as general-purpose solutions for interactive software. 

 
Synchronous data flow languages have been created to support the 

creation of interactive software such as automatic control systems. 
(Halbwachs 1991) describes a synchronous dataflow language, LUSTRE. 

Extensions to LUSTRE have been developed to implement user interfaces. 

In LUSTRE inputs are used for controlling data flows. In addition, LUSTRE 
code can be used to define state machines. However, the interoperability 

between state machines and data flows in LUSTRE is limited as in 
previously described solutions. In addition, it is very difficult to replace 

one data flow with another, once it is defined. The definition of new 
control structures is not supported. 

 
For HoliDes, the description of the HMI Interaction model together with 

the structure of the model is shown in Figure 9. 
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2.5.2 A new event-based approach 

Remark: this part has been subject of an official communication. Refer to 

(Chatty 2016) for more information. 

 
“djnn” (available at http://djnn.net) is a general framework aimed at 

describing and executing interactive systems. It is an event driven 
component system with: 

 A unified set of underlying theoretical concepts focused on 
interaction. 

 New architectural patterns for defining and assembling interactive 
components. 

 Support for combining interaction modalities. 
 Support for user centric design processes (concurrent engineering, 

iterative prototyping). 
 

An architecture of reactive components 
djnn relies on a model of interactive software in which any program can 

be described as a tree of interactive components. The execution of a 

program is described by the interactions between its components, and 
between them and the external environment: components react to events 

detected in their environment, and may themselves trigger events. 
 

Programmers create interactive programs by instantiating and assembling 
software components, and connecting them to hardware components. The 

djnn environment provides some basic software components to this 
purpose: components that support user interaction, components for data 

representation, computation-oriented components, components that 
encapsulate pre-existing code written in another language, components 

aimed at assembling and connecting other components. 
 

http://djnn.net/
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Figure 9: Simplified UML representation of the component hierarchy 

 
 

We describe hereafter some of these basic components. 
 

Control oriented components 
djnn provides the control structures that have been introduced for 

interactive software in the last decades, as well as traditional 
computation-oriented control structures. The djnn fundamental control 

primitive is called “binding”. A binding is a component that creates a 
coupling between two existing components. If there is a binding between 

components C1 and C2, then whenever C1 is activated, C2 is activated 
(C1 is called trigger and C2 is called action). A binding can be interpreted 

as a transfer of control, like a function call in functional programming or a 
callback in user interface programming. 

Figure 10 shows simple examples of bindings definition. 

 
# beeping at each clock tick 

binding (myclock, beep) 

 

# controlling an animation with a mouse button 

binding (mouse/left/press, animation/start) 

binding (mouse/left/release, animation/stop) 
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# quitting the application upon a button press 

binding (quitbutton/trigger, application/quit) 

Figure 10: Examples of bindings definitions in djnn 

 

Bindings are used to define a set of additional control structures required 
to describe interactive software:  

 Switches, which activate one among several components depending 
on the value of their state. 

 Connectors, which ensure that any modification of their input value 
are propagated to their output values; 

 Watcher (allow to connect C1 and C2 to C3 where C3 is activated only 
when C1 and C2 are synchronously activated) 

 Composite components, which propagate their activation to their 
sub-components; 

 Iterators, which activate other components in a given order; 
 Tests, which activate another component only when they are activated 

and when a boolean value is true; 
 

Figure 11 shows example of control oriented components definition. 

 
# ensure that rectangle rect1 will move with 

# the mouse. 

connector (mouse/position/x, rect1/position/x) 

connector (mouse/position/y, rect1/position/y) 

 

# m is performed when input1 and anput2 are 

# simultaneously activated 

multiplication m (input1, input2, output) 

watcher (input1, input2, m) 

Figure 11: examples of derived control structure definitions in djnn 

 

FSM are one of the most used control structures for describing user 
interfaces with djnn. They contain other components named states and 

transitions. Transitions are bindings between two states (named origin 
and destination). A transition is active only when its origin is active. It 

behaves as a binding with a default action: changing the current state of 
the FSM to its destination state. Therefore, the transitions define the 

inputs of the state machine: the state evolves on the sequence of 
activation of the triggers of the transitions, and ignores events that do not 

match the current state.  Figure 12 shows the internal behaviour of a 
software button designed for use with a mouse: the djnn code above 

implement the FSM shown at the bottom, where “r” is the image of the 
button (a rectangle component). 
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component mybutton { 

 rectangle r (0, 0, 100, 50) 

 fsm f { 

   state idle, pressed, out 

   transition press(idle, r/press, pressed) 

   transition trigger(pressed, r/release, idle) 

   transition leave (pressed, r/leave, out) 

   transition enter (out, r/enter, pressed) 

 } 

} 

Figure 12: Example of a FSM definition 

 
Programmers can extend this basic set by assembling available 

components to produce new control structures dedicated to their own 
needs, for instance control structures dedicated to software adaptation. 

 
Components for input/output handling 

In addition to these control structures, djnn comes with a collection of 

basic types of components dedicated to handle user interfaces:  
 graphical oriented components (rectangle, ellipse, circle, text, line, 

polygons, opacity, gradient, rotation, translation, …) 
 input components (mouse, multi-touch, sensors, etc.),  

 
Other components 

Other components allow the programmer to describe additional elements: 
 file management components (load and save a graphical file) 

 numerical oriented components: increment, addition, substractor, 
multiplier, divisor, … 

 Boolean oriented component (and, or, xor, not, comparator…) 
 Property: they are component that can manage a piece of 

information (integer, Boolean, text…) and provide access to other 
components. 

 etc.  

 
Components offer an interface carrying out both generic and specific 

services:  
 Generic services: all components can be ran or stopped 

 Specific services: element dependent. For example, a rectangle 
component comes with some basic sub-components: 
 x: abscissa of the rectangle  
 y: ordinate of the rectangle  
 width: width of the rectangle  
 height: height of the rectangle  

pressed

idle out

press

r/press

trigger

r/release

leave

r/leave
enter

r/enter

pressed

idle out

press

r/press

press

r/press

trigger

r/release

trigger

r/release

leave

r/leave

leave

r/leave
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 rx: horizontal size of the round corners  
 ry: vertical size of the round corners  
 press: mouse pressed event. The press element has 2 children: x and y  
 release: mouse released event  
 move: mouse moved event. The move element has 2 children: x and y  
 enter: mouse enter event  
 leave: mouse leave event  

 

To design various and large interactive systems, components must be 
interconnected. For this purpose, two mechanisms are available in the 

framework: 
 Recursive composition: components can contain other components. For 

example, a complex graphical scene is composed of several graphical 
sub-components; a mouse is made of two buttons and one wheel; a 

Finite State Machine (FSM) is made of several bindings etc. The 
designer can explicitly manage this tree-oriented architecture. 

 Transversal connection: all the available components can be connected 
by control primitives, whatever is their place in the tree of components. 

For example, a binding can connect a mouse press to a rectangle 
horizontal position. 

 
Combining FSMs by coupling their transitions, or by controlling the 

activation of one by a state or a transition of another, makes it possible to 

create complex behaviours (Figure 13). It also makes it easier to structure 
applications as collections of reusable components. 
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Figure 13: UML representation of a simple djnn button 

 

2.5.3 A model of djnn components 

In the context of Holides project, and specially WP2 objectives, a model of 
djnn components has been defined. An abstract syntax and a grammar for 

djnn have been defined through various XML schemas.  
 

Figure 14 contains the description of a binding and a FSM: a binding is an 

extension of a component containing identification of a source (“trigger”) 
and of a target (“action”). A FSM is an extension of a component 

containing a sequence of minimum of two states and a sequence of a 
minimum of one transition (state and transition are defined elsewhere in 

the XML schema). 
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<xs:complexType name="binding"> 

  <xs:complexContent> 

    <xs:extension base="cmn:core-component"> 

      <xs:attribute name="source" 

          type="xs:string" use="required" /> 

      <xs:attribute name="action" 

          type="xs:string" use="required" /> 

    </xs:extension> 

  </xs:complexContent> 

</xs:complexType> 

 

<xs:complexType name="fsm"> 

  <xs:complexContent> 

    <xs:extension base="cmn:core-component"> 

      <xs:sequence> 

        <xs:element name="state"  

                    type="state" 

                    minOccurs="2" 

                    maxOccurs="unbounded" /> 

        <xs:element name="transition" 

                    type="transition" 

minOccurs="1" 

                    maxOccurs="unbounded" /> 

      </xs:sequence> 

    </xs:extension> 

  </xs:complexContent> 

</xs:complexType> 

 
Figure 14: XSD definition of two djnn components (binding and FSM) 

 

The main advantages provided by these definitions are: 
 Definition of a well-defined model for djnn: illicit constructs using the 

language are easily and automatically detected during edition of the 
model thanks to the XML schema. 

 Improvement of interoperability: this evolution is a first step toward 
the definition of a better integrated tool chain with the capability to 

dump a concrete graphical user interface (GUI) in an XML file and 
conversely to load and to execute a GUI from an XML based 

description. 
 To provide a model ready for formal verification. Indeed, given that 

numerous properties of a system are mirrored in the structure of the 
tree of its XML representation, it is possible to investigate such 

properties with dedicated tools. These tools are described in WP4 D4.7 
document. 
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2.6 Training Models 

The training model has been specifically derived for the WP7 Training AdCoS, 

where the model is evaluated, and has been generalized for the final version 

of the training model, by removing aircraft specific elements and naming.  
 

Figure 15 shows the final model for training application. There are no 
significant changes in the model compared to D2.6. The only change is that a 

rating model has been added to the standard, allowing the trainers to rate 
the trained elements during the course. Figure 16 shows the rating model.  

 
In order to have a complete description with the model, the following text is 

taken from D2.6 to explain the training model:  
 

Main class is the TrainingModel itself, which owns a set of standards the 

training is related to, a set of requirements the training has to fulfil, as well 
as a set of phases describing the phases of the journey the vehicle takes 

(e.g. starting the engine, takeoff, climb, cruise, …).  

 
Each Standard describes a source for training Requirements, or in other 

words formal training objectives that the trainee is required to know and 

apply after the training. For example, a driver is required to know how to 
operate the gear change (economically), or a pilot is required to know how to 

start the engines of the aircraft. The requirements are usually part of a 
check, where the requirements are officially tested before a licence is issued. 

Therefore, a set of CheckCondition’s can be assigned to the requirement, 

which describes conditions for failing or passing the check.  
 

Each requirement is associated with a Procedure, which is a task model (see 

section 2.1) describing the tasks that are usually needed to reach the 

requirement successfully. A procedure is broken down into normal 
procedures (NSOP) performed in standard operation of the vehicle, and 

abnormal procedures (ASOP), which are performed in abnormal situations, 
i.e. when a system malfunction occurs. A procedure can have a Metric, 

which holds the result of a certain analysis for that procedure, i.e. a 

comparison with other procedures (ProcedureComparisonMetric).  

 
In addition, the procedure is assigned to a (journey) phase, in which the 

procedure is usually applied. For each JourneyPhase, one can specify which 
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elements must be trained in this phase, i.e. often certain procedures are only 
applied in a certain phase (e.g. starting the aircraft engines on ground during 

pre-flight parking), and some malfunctions can only occur during a certain 

phase (e.g. the ignition can only fail when engines are started). In order to 
express this, the procedures can be specified as part of a Sequence (all 

procedures have to be trained) or a Choice (per session only one element is 

trained, but all have to be trained during the complete training). More details 

on that are described in the section 3.3 of the SyllabusManager in D2.6. 
 

 

Figure 15: Common Training Model 

 

As explained above, the training model has been extended with the rating 
model. For that, the Standard class has several containment references to a 

RatingTable, describing all possible RatingTables that can be used in this 

model. Each Procedure is associated (reference) with one of these Tables, 
thus allowing re-use of certain tables in different procedures.  
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Figure 16: Rating Model for Common Training Model 

 
A RatingTable contains several sections grouping RatingElements together. A 

RatingElement has a name explaining what to rate, allow to store a 

comment, and has a list of grades, for each trainee (HumanAgent). The 

grading scheme (i.e. from 1 to 6) is defined by the different sub-types of the 

RatingElement:  
- GradeRatingElement: Rating from 1 to 6 and N for “Not Observed” 

- LateralAccuracyRatingElement: 5+,5,2,2,1,0,N (degree deviation) 

- VerticalAccuracyRatingElement: 200+,100+,50+,40+,30+,10+,N 

(feet deviation) 

- SpeedRatingElement: 15+,15,10,7,5,2,N (knots deviation) 

- GlideslopeAccuracyRatingElement: 2.0+,2,1.5,1,0.5,0.2,N (dots 

deviation) 

 
An example RatingTable from the aircraft domain (take off run), is shown in 

Figure 17, and the constructed view in the SyllabusManager from this model 
is shown in Figure 18.  
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Figure 17: Example Model: TAKE OFF RUN from aeronautics domain 

 
 

 

 

Figure 18: Example Rating Table for Aeronautics Domain 
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3 Modelling Techniques and Tools V2.0 

This section is dedicated to the presentation of the different Modelling 
Technics and Tools developed by WP2 partners during the project. All of 

them were described in detail in previous deliverables, including D2.6. This 
section is mainly focused on their current status according to their recent 

update implemented during the last period. 
Table 1 gives an overview on the tools and their application in the AdCoS 

domains: 
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Table 1: Tools and techniques and their application in the domains of Health, Aeronautics, Control Room, 

Automotive and other domains outside HoliDes. TTs that can be used across domains (AD), are already used 

cross-domain (CD), that are used cross-companies (CC) or cannot be used cross-domains but influenced other 

TTs (I). 
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MagicPED 
Procedure Editor 
extension of MagicDraw 
UML Tool 

Task Model OFF       CD       

CASCaS 
Cognitive Architecture 
for Safety Critical Task 
Simulation 

Cognitive Model OFF            CD  

HEE 
Human Efficiency 
Evaluator 

Task Model, Cognitive 
Model (CASCaS) 

OFF   CD         CD  

SyllabusManager 
Tool for creation of 
adapted training syllabi 

Task Model, Training 
Model 

OFF       
CD 
CC 

      

COSMODRIVE  
Cognitive Simulation 
Model of the car Driver 

Cognitive Model IFS              

GreatSPN for MDPN 
Editor for MDPN used as 
virtual co-pilot 

Petri Net Model UTO             CC 

DIR (former BAD-
MoB) 

Driver Intention 
Recognition models 

Human Behaviour 
Model 

OFF          CC    

Cognitive Distraction 
Classifier 

Model of human 
cognitive distraction 

Applied Cognitive 
Model 

TWT      CD    AD CC CC AD 

djnn 
HMI model editor and 
execution 

UI / Interaction Model ENA             
CC 
CD 

Visual Distraction 
Classifier 

Driver Distraction 
Classifier 

Human Behaviour 
Model 

UTO              

Pilot Pattern Classifier Pilot Pattern Classifier 
Human Behaviour 
Model 

TEC      CD    AD AD AD AD 
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For modelling Techniques and Tools (TT), integration through OSLC is only 
planned for lifecycle tools, but not for non-lifecycle TTs. Table 2 gives an 

overview which TTs are lifecycle and which are non-lifecycle tools. 

 

Table 2: List of lifecycle and non-lifecycle TTs 

Lifecycle TT Non-lifecycle TT 

MagicPED Cognitive Distraction Classifier (CDC) 

SyllabusManager CASCaS 

Human Efficiency 
Evaluator (HEE) 

Driver Intention Recognition (DIR) models  
(former BAD-MoB) 

 djnn 

 Pilot Pattern Classifier (PPC) 

 

 

3.1 Magic PED (OFF) 

MagicPED is the Task Editor of OFF, which is based on the commercial UML 
tool MagicDraw by NoMagic Inc6. Using an UML tool has the benefit that the 

potential users (e.g. Software engineers) can stay in their tool world for 
developing the system. MagicPED consists of two parts: 

1. The UML editor MagicDraw itself. MagicDraw provides a full featured 

UML editor, and provides, next to model validation, an API for 
extending MagicDraw via plugins, and an additional TeamServer, 

which allows to cooperatively work on models. 
2. A package by OFF with the UML profile for the task models and a set 

of plugins, extending the editor of MagicDraw.  
 

In this deliverable we will use the name MagicPED for MagicDraw with the 
UML profile for task models and the plugins written by OFF installed.  

 
As there are no significant changes to the previous version, a more detailed 

description is omitted in this deliverable. Details on MagicPED can be found 
in D2.6, section 3.1, and Annex II of D2.4 (MagicPED Handbook).  

                                    
6 http://www.nomagic.com/products/magicdraw.html  

http://www.nomagic.com/products/magicdraw.html
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3.2  Human Efficiency Evaluator (OFF) 

The Cognitive Analysis of Adaptive Cooperative Systems (AdCoS) depends on 

complex architectures and simulations, and is still driven by proprietary 

notations. The creation of cognitive models requires in depth cognitive 
modelling knowledge and is currently only accessible to experts. The Human 

Efficiency Evaluator (HEE) overcomes these drawbacks, by providing an 
easy-toö-use tool that supports evaluation in early design phases, by 

prediction of task performance, operators’ workload, attention allocation of 
the operator, and operator’s reaction times of different HMI designs by 

simulating the human behaviour with a cognitive architecture, based on low-
fidelity prototypes such as photos, screenshots or sketches as input.  

 
Typical design questions that can be answered with the Human Efficiency 

Evaluator (HEE) are: 
 How does the task execution performance of the operator change with 

each adaptation? 
 Is the workload of the operator affected? 

 Does it change the average attention allocation of the operator? 

 Has it an impact on the average reaction time of the operator to a 
specific event? 

 
Since D2.6, there have been no significant updates on the model and the 

editor of HEE, thus a detailed description is not added here. Details can be 
found in D2.6, section 3.2, and in D2.5, section 3.2.2 a state of the art 

review can be found.  
In the last year, the HEE has been applied by the partners as part of the HF-

RTP in two different domains: Healthcare and Automotive. Within the Health 
domain it was used for evaluation of the 3D-Acquisition AdCoS by PHI and 

also in the OpenEHR use case by ATO. Details on the results are described in 
D6.9. Recently, the HEE has been also been used by the DLR to evaluate an 

urban automotive scenario (traffic light assistance) and currently TAK is 
applying the HEE to evaluate their use case about an adaptive HMI in lane 

change and overtaking scenarios. The former results have been accepted to 

be published at the Automotive UI conference 2016 and the latter results are 
currently analysed and are planned to be reported for D9.10 
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3.3 SyllabusManager (OFF, TRS) 

OFF and TRS decided to rename the TrainingManager to SyllabusManager. In 

the previous deliverables, this tool can therefore be found in under the name 

TrainingManager, while in this deliverable we use SyllabusManager.  

3.3.1 MTT Description 

The SyllabusManager is developed by OFF in cooperation with TRS within 
HoliDes. Objective is to develop a tool, allowing modelling of all aspects of a 

transition training (i.e. training from one aircraft type to another), in terms 
of  

 Procedures to be trained by the trainee (Standard Operating 
Procedures (SOPs)) 

 Flight Crew Licensing Requirement (FCLRs; coming from Regulations) 
 Training syllabi, including flight phases, scenarios, … 

 Learning Knowledge 
 Adaptation of the syllabus to previous knowledge (i.e. flown aircrafts, 

previous licences).  
 

The SyllabusManager takes the SOPs from two different aircrafts, and allows 
the trainer to create new training syllabi. For the adaptation, the 

SyllabusManager provides a categorisation of the different procedures, which 
are based on the differences of the SOPs. In addition, a “novelty score” of 

each training element is calculated, that depends on  

- the category of difference (the more different to previous 
knowledge, the more novelty is added) 

- the number of repetitions this element has been already trained 
(during the course) 

 
The SyllabusManager has been successfully applied in the aeronautics 

domain in Use Case 7.2 “Adaptive Flight Crew Simulator Transition Training”.  
 

3.3.2 State of the art 

Please refer to deliverable D2.5, section 3.3.2 for a state of the art review. 

https://de.wikipedia.org/wiki/Standard_Operating_Procedure
https://de.wikipedia.org/wiki/Standard_Operating_Procedure
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3.3.3 Current status 

Since D2.6, several improvements have been implemented in the 

SyllabusManager. Main changes in comparison to the D2.6 descriptions are:  

 Editing is now done in one step, i.e. the training elements can be 
added directly to the timeline of a lesson by drag and drop.  

 Export to Word has been added (as printout for students and 
trainer) 

 A palette for quick insertion of training elements has been added.  
 The configuration of the elements that are inserted has been 

replaced with a wizard.  
 

 

 

Figure 19: Screenshot Main Window of SyllabusManager 

A more detailed description of the tool can be found in Annex II, the 
Handbook of the SyllabusManager.  

Timeline per Lesson 
Per Default an initial 
Cockpit Preparation and 
a Buffer is added 

Overview 
table per 
Lesson 

Fill Level for 
TIME 

Fill Level for 
CONTENT 
(Novelty 
Score) 
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3.3.4  Integration status 

Integration in the HF-RTP is completed, see also D7.9.  

3.4 CASCaS (OFF) 

The Cognitive Architecture for Safety Critical Task Simulation (CASCaS) is a 
framework for modelling and simulation of human behaviour. Its purpose is 

to model and simulate human machine interaction in safety-critical domains 
like aerospace or automotive, but in general it is not limited to those specific 

domains. 
 

 
Figure 20: Structure of the cognitive architecture CASCaS with all internal 

components and the major data flows 
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Figure 20 shows the current architecture of the cognitive model with all its 
components. Basically, the architecture consists of 5 components: a Goal 

Module, which stores the intentions of the model (what it wants to do next). 

The Central Processing is subdivided into three different layers: the cognitive 
layer which can be used to model problem solving, the associative layer 

executes learned action plans and the autonomous layer simulates highly 
learned behaviour.  

 
CASCaS is used as simulation of human behaviour in the Human Efficiency 

Evaluator. Please refer to D2.6 section 3.2 for more details on the HEE, and 
D2.6 section 3.4 for more details on CASCaS.  

 

3.5 COSMODRIVE (IFS) 

3.5.1 State of the art 

COSMODRIVE (for Cognitive Simulation Model of the car Driver) is a long-

term research program of IFSTTAR (Bellet et al, 2007, 2009, 2012) aiming to 
provide a computational simulation model of car drivers. The general 

objective is to virtually simulate the human drivers’ perceptive and cognitive 

functions implemented when driving a car, through an iterative “Perception-
Cognition-Action” regulation loop.  

 
However, a totally new version of this model has been specifically developed 

for HoliDes project, in order to be interfaced with other HoliDes MTTs (like 
RTMaps, Pro-SiVIC or Djin), and then to be used in WP4 to support the 

Virtual Human Centred Design (V-HCD) of future AdCoS in charge to support 
human operators in automotive domain (WP9).  

 
Regarding more specifically the “HF-RTP approach” in HoliDes, COSMODRIVE 

plays the role of a “Human Factor” component interacting with a “RT-
Platform” based on RTMaps and Pro-SIVIC software (provided by INT and 

CIV), and then proving an instance of a tailored HF-RTP for supporting 
AdCoS design and test in WP9: the V-HCD platform (described in D4.6/4.7). 

From this integrative platform, it is possible to generate dynamic simulations 

of a car driver (simulated with COSMODRIVE), interacting with a virtual road 
environment (simulated with Pro-SIVIC), through actions on a virtual car 

(simulated with Pro-SIVIC), equipped with a Virtual AdCoS (based on ADAS 
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models and driver Monitoring Functions so-called MOVIDA - for Monitoring of 
Visual Distraction and risks Assessment- as presented in D3.6/3.7).  

 

This V-HCD tool chain, based-on COSMODRIVE model, was used to support 
the MOVIDA-AdCoS virtual design, prototyping and test in WP4, and is one of 

the “simulation demonstrators” in WP9, specifically dedicated to the 
implementation and the deployment of the “HF-RTP approach” to automotive 

domain (see D9.9). 

3.5.2  MTT Description 

The version of COSMODRIVE model developed for HoliDes is composed of 
three main modules (Figure 21): a Perception Module (in charge to simulate 

drivers’ perceptive processes, their visual scanning, and their visual 
distraction status), a Cognition Module (in charge to simulate drivers’ 

situation awareness, anticipation and decision-making processes), and an 
Action Module (in charge to simulate executive functions and vehicle control 

abilities) generating driving behaviours. In addition, COSMODRIVE is liable to 
be monitored by a virtual AdCoS (more particularly by MOVIDA-AdCoS 

developed by IFS in WP3; see D3.7) and also to adapt its driving behaviour 

according to warning generated by the AdCoS.  
 

 

Figure 21: COSMODRIVE use in HoliDes for AdCoS and car driving simulation 

(supported by Pro-SIVIC and RTMAPS software) 
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Moreover, the aim of the use of COSMODRIVE model in HoliDes is not only to 

simulate these perceptive, cognitive and executive functions in an optimal 

way, but also to simulate driver’s errors in terms of misperception of event, 
erroneous situational awareness, or inadequate behavioural performance, 

due to visual distractions (resulting of a secondary task performed while 
driving, for instance).  

 

3.5.3  Current status 

In its current status, COSMODRIVE model is able to simulate human drivers’ 
perception (visual scanning and visual distraction status), cognitive 

processes (like situation awareness, decision-making and action planning) 
and driving behaviour (i.e. action implementation to pilot the virtual car).  

This model can be used to simulate a car driver more or less distracted, 
driving a virtual car equipped or not with the MOVIDA-AdCoS. 

3.5.3.1 Simulation of drivers’ perception and distraction state 

In the frame of HoliDes, one of the core components of COSMODRIVE for 

MOVIDA-AdCoS design and test is the Virtual Eye of the perception module. 

This virtual eye includes 3 visual field zones: the central zone corresponding 
to foveal vision (solid angle of 2.5° centred on the fixation point) with a high 

visual acuity, para-foveal vision (from 2.5° to 9°), and peripheral vision 
(from 9° to 150°), allowing only the perception of dynamic events (a more 

detailed description of COSMODRIVE virtual eye was provided in D2.6).  
 

Moreover, two complementary processes are implemented in the Perception 
module of COSMODRIVE to simulate the human driver’s perceptive functions 

while driving a car. The first one, named perceptive integration, is a “data-
driven” process (i.e. bottom-up integration based on a set of perceptive 

algorithms) and allows the cognitive integration of environmental pieces of 
information into the Cognition Module, according to their saliencies for the 

human eye (as illustrated in Figure 22). 
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Figure 22: Saliency map implemented by COSMODRIVE perception module 

 

The second process is the perceptive exploration (referring to Neisser’s 
theory of perceptive cycle; Bellet et al, 2012) which is a ‘‘knowledge-driven’’ 

process (i.e. top-down) in charge to continuously update the driver’s mental 
model of the road environment in the Cognition Module, and to dynamically 

explore the road scene according to driver’s situation awareness, risk 
assessment, intentions and decisions to be made.  

 

 

Figure 23: Simulation of Drivers’ visual Scanning with COSMODRIVE  
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From this 2nd process, COSMODRIVE is able to dynamically explore the road 

environment with its virtual eye and thus to simulate real drivers’ visual 

scanning.  Visual strategies take the form of a set of fixation points which are 
the “outputs” of COSMODRIVE model to be then monitored by MOVIDA-

AdCoS. By observing COMSODRIVE, this AdCoS may analyse drivers’ visual 
scanning and assess their visual distraction status at a given time (like “off-

road” glance, for instance). The Figure 23 gives some examples of drivers’ 
visual scanning simulations with COSMODRIVE model, providing similar 

outputs of data collected with an eye tracking system among real human 
drivers (as illustrated on the left view).  

  

3.5.3.2 Simulation of drivers’ Situation Awareness, Anticipation 

and Decision-Making processes 

 

Perceptive data collected by the virtual eye and processed by the Perception 
Module are then integrated in the Cognition Module of COSMODRIVE (Figure 

24). The key-component of this Cognition module are “Mental 

Representations” (Bellet et al., 2009), corresponding to the driver’s Situation 
Awareness according to Endsley’s definition of this concept (1995): the 

perception of the elements in the environment within a volume of time and 
space, the comprehension of their meaning, and the projection of their 

status in the near future.  
 

 

Figure 24: Mental Representation elaboration from Perceptive data 

 
Mental representations, as mental models of the driving situation, are 

dynamically formulated in working memory through a matching process 
between (i) information perceived in the external environment and (ii) pre-
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existing driving knowledge, that are modelling in COSMODRIVE as “Driving 
Schemas” and “Envelop Zones” (described in D2.6). These mental 

representations provide ego-centred and a goal-oriented understanding of 

the traffic situation. They take the form of a Three-Dimensional models (i.e. 
temporal–spatial) of the road environment, liable to be mentally handled by 

the driver, in order to support anticipation through cognitive simulations, and 
thus providing expectations on future situational states. This cognitive 

process of anticipation is based in COSMODRIVE on a “mental deployment” 
process (Bellet et al., 2009). The following figure (Figure 25) provides an 

example of such mental deployment in order to make the decision to 
implement (or not) an overtaking manoeuvre of a slow truck, by managing 

the collision risk with the surrounding traffic. To support its decision-making, 
COMSODRIVE mentally explore alternative driving behaviours (for instance, 

by immediately implementing a Lane Change manoeuvre with the current 
speed versus after having braking and reducing the ego-car speed) in order 

to check their feasibility and to assess their respective level of risk.  From the 
results of these mental deployments, COSMODRIVE make its decision by 

selecting the less critical behaviour. Then, this planned behaviour at the 

cognitive level is given to the Action module in order to be effectively 
implemented by COSMODRIVE (through action on vehicle controls). 
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Figure 25: Mental Representation elaboration from Perceptive data 

When driving, human drivers continually update their Situational Awareness 
(SA) as and when they dynamically progress on the road. SA contents 

depend on the aims the drivers pursue, their short-term intentions (i.e. 
tactical goals, such as changing of lane for overtaking) and their long-term 

objectives (i.e. strategic goals, such as reaching their final destination within 

a given time), the attentional resources they allocated to the driving task 
and their visual scanning of the road environment. They are the starting 

point of all the decision-making and behaviours implemented by the driver. 

3.5.3.3 Simulation of visual distraction risks with COSMODRIVE 

In case of a visual distraction, the mental model updating may be negatively 
impacted, more particularly in case of too long off-road glance and/or in case 

of unexpected change in the driving environment. Figure 26 presents a 
typical example of erroneous Situation Awareness of the driver due to visual 
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distraction, as simulated with COSMODRIVE on the V-HCD platform. In this 
situation, the followed truck brakes when COSMODRIVE is visually distracted 

(fixation point of the virtual eye on the car radio; central view). 

Consequently, the mental model of the driver (left view) is not correctly 
updated regarding this unexpected situational change (right view). 

 

 

 

Figure 26: Erroneous updating of Driver’s SA due to visual distraction 

 

3.5.4  Integration status 

COSMODRIVE integration as an “HF component” of a tailored HF-RTP for 
automotive domain was a joint effort of IFSTTAR, INTEMPORA and CIVITEC, 

implemented in WP4 and WP9 (complementary descriptions of this 
integrative work are also presented in D4.7 and D9.7). To support the virtual 

design, prototyping and test of the MOVIDA-AdCoS (described in D3.7), a 
Virtual Human Centred Design platform (so-called V-HCD) has been jointly 

developed by IFS, CVT and INT, as an example of a tailored HF-RTP based on 

RTMaps software specifically dedicated to dynamic simulations of virtual 
AdCoS (see detailed description in D4.7). This V-HCD integrative platform 

was completed during HoliDes and then used in WP4 to virtual design and 
evaluate the MOVIDA-ADCoS and to provide one of the simulation 

Demonstrators in WP9 (see D.9.9).  
 

Synthetically, the V-HCD integrates 4 main MTTs: (1) COSMODRIVE model 
able to visually explore the road environment from a “virtual eye” and to 

drive (2) a virtual car (simulated with Pro-SIVIC) (3) equipped with virtual 
ADAS (Advanced Driving Aid Systems) and with the MOVIDA-AdCoS 

(simulated with RTMaps and Pro-SIVIC), for dynamically progressing in (4) a 
virtual 3-D road environment (simulated with Pro-SIVIC). To support the HF-

based design process in HoliDes, the V-HCD platform is used to generate 
dynamic simulations of car sensors, ADAS and AdCoS when interacting with 
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COSMODRIVE driver model (i.e. the “HF component” of the RTP), in order to 
support the virtual prototyping and test of MOVIDA.  

 

All the MTTs required for the MOVIDA-AdCoS and its design process with the 
V-HCD platform have been integrated into the RTMaps software. The RTMaps 

diagram presented in Figure 27 provides an overview of the COSMODRIVE 
and MOVIDA integration/interfacing with this software. On this figure, the 

MOVIDA-AdCoS sub-diagram receives inputs (1) from COSMODRIVE 
regarding both drivers’ visual behavior (to assess the visual distraction state 

of the driver) and their actions on vehicle commands (for lateral and 
longitudinal control of a Pro-SIVIC ego-car) and (2) from the ADAS virtually 

simulated with Pro-SIVIC and RTMaps. In addition, MOVIDA-AdCoS 
generates outputs towards the Pro-SIVIC virtual car to implement 

COSMODRIVE and/or MOVIDA-AdCoS driving actions. 
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Figure 27: RTMaps diagram for MOVIDA-AdCoS tests with COSMODRIVE  

 
In WP4 and WP9, the objective was to use COSMODRIVE-based simulations 

to support MOVIDA-AdCoS Validation and Verification from dynamic 
simulations, by considering the future use of this AdCoS by human drivers 

(i.e., end-users, as simulated with COSMODRIVE).  
 

Figure 28 provides an illustration of V-HCD use for evaluating the advantage 
a simulated MOVIDA-AdCoS regarding road safety. At phase 1, the 

COSMODRIVE is visually distracted (i.e. the Virtual eye is focused on the 
dashboard). At this time, the driver’s mental model (i.e. Situation 

Awareness) of the road environment is correct because the off-road glance is 
only starting.  
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At phase 2, a white car is overtaking the driver, and the followed truck starts 

to brake. Due to the visual distraction, the Situation Awareness of 

COSMODRIVE is not updated (i.e. the truck is closer and the white car is 
present in the reality (as presented on the left image), versus the truck is 

still far and there is no white car in the driver’s Situational Awareness (as 
presented on the right image)). In parallel, the MOVIDA-AdCoS computes 

(from the simulated radars) the Inter-Vehicular Time (IVT) with the lead 
truck and also detects an approaching car in the blind spot area (on left 

lane). MOVIDA functions also diagnose the visual distraction status of 
COSMODRIVE, and generate warnings (visual and auditory) to alert the 

driver of the different collision risks (with the truck and in addition with the 
lateral car in case of lane change).  

 
At phase 3, the warned COSMODRIVE focuses its virtual eye on the road 

environment and updates its situational awareness. At this time, the 
Driver/COSMODRIVE is aware of the risk and able to manage it.  

 

At phase 4, the incoming red car overtakes the ego car, and the MOVIDA-
AdCoS informs the driver that a Lane Change is now possible.  

 
Integrated simulations based on “COSMODRIVE + MOVIDA-AdCoS + ADAS + 

Car Sensors” were used during the virtual prototyping process of the 
MOVIDA-AdCoS (implemented in WP4; see D4.7) in order to progressively 

evaluate its efficiency (i.e. how well this driving aid works?) and its 
effectiveness according to real human driver’s needs (i.e. how useful this 

driving aid is?). During this design cycle, I-Deep functionalities of RTMaps 
were used to replay several times driving scenarios (like the scenario 

presented in Figure 28 for instance) and testing different timings of the 
AdCoS warnings with the aim to identify, for instance, the last moment when 

human drivers are able to manage the risk from these warning, and when 
they are not able to avoid the collision even if warned, requiring in this case 

to activate an automatic vehicle control taking by the MOVIDA-AdCoS (e.g. 

emergency braking for collision avoidance or for collision mitigation). 
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Figure 28: COSMODRIVE-Based simulation to support AdCoS virtual design  
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3.6 Great SPN for MDPN (UTO) 

3.6.1 State of the art 

GreatSPN is a tool developed by the University of Torino in the last 30 years. 

It is a software framework for the verification of systems, represented with 
the Petri net formalism, that has been used with success to model many real 

cases, like bandwidth load in multiprocessor systems, chemical reaction 
networks, peer-to-peer systems, UML diagrams, and other. The extension to 

include Markov Decision Process (MDP) solvers and Markov Decision Petri 
Nets (MDPN) as a Petri net language for the high level definition of MDP is 

instead work that started a few years back and is it still under development, 
in particular to adapt it to the needs of HoliDes. Adaptation concerns the 

graphical user interface (GUI) and the MDPN/BMDP7 solver, as described 
throughout this section.  

The GUI allows drawing the models graphically, using the Petri net 
formalism. The interface of the GUI is shown in Figure 29. 

 

                                    
7 BMDP means Bounded-parameter Markov Decision Process (see next 
paragraphs for more details). 
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Figure 29: The GreatSPN graphical interface 

The general data model of the GreatSPN editor is a compositional model 

where each component is a Petri net, or an automaton. Components can 

then be combined into a larger model using algebra, a software element for 
the composition of Petri Nets which is also part of GreatSPN. 

Model design (depicted in the central art of the window) is a fully interactive, 
WYSIWYG application, where the modeller draws places, transitions, arcs, 

and the other model elements by a point-and-click approach. 
Drawn models can be tested interactively, to better understand the model 

behaviour, and to identify the invariants. Two examples of interactive testing 
are shown in Figure 30. 
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Figure 30: An example of interactive testing in GreatSPN 

 

Invariant visualization supports P-semiflows and T-semiflows, which 
characterize the behaviour of the model (A), while interactive simulation (B) 

allows the user to play with the model, activating its transitions to simulate 
the behaviour of the system and observe the result.  

Once a model has been drawn, performance indices can be computed on it 

using a collection of numerical solvers. A batch of indices can be specified 
through the GUI, which invokes the solvers, performs the computation and 

shows the results interactively. Figure 31 shows the interface for the 
specification of performance indices on a Petri net model. 
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Figure 31: Definition of performance indices in GreatSPN 

 
Compositionality of MDPN models 

 
The GUI will support compositionality of MDPN models, based on the basic 

functionality algebra of GreatSPN. Two distinct parts compose MDPN models: 
a probabilistic net, and a non-deterministic net, both modelled as normal 

Petri nets in the GUI, as shown in Figure 32, which displays an MDPN model 

drawn with the GreatSPN GUI. 
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Figure 32: An MDPN in GreatSPN 

Compositionality of the two sub-models creates a single model where events 

can be local to a sub-model, or synchronized between multiple sub-models. 
The state of the net, represented with the places (circles), can be local (like 

place InRepair) or shared (like place Down). The MDPN model can then 
generate a Markov Decision Process (MDP), which is the underlying statistical 

process that represents the MDPN behaviour. The full automatic 
compositionality of MDPN nets is under development, and will be realized 

under the HoliDes project. 
 

State of the Art: 

In the literature, to the best of our knowledge, very few alternative high-
level formalisms for MDPs and related tools were proposed. 

 
For instance, models of the probabilistic model checking tool PRISM consists 

of a number of modules, each of which corresponds to a number of 
transitions. Each transition is guarded by a condition on the model’s 

variables, and the transitions of a module can update local variables of the 
module. Multiple transitions may be simultaneously enabled, and the choice 

between them is nondeterministic; the chosen transition determines a 
probabilistic choice as to how the variables should be updated. Modules may 
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communicate through synchronization on shared actions with other modules. 
PRISM does not directly support a multistep nondeterministic or probabilistic 

transition accounting for the evolution of all components in a given time unit: 

this can be explicitly modelled by using a variable for each component which 
records whether the component has taken a transition this time unit. 

The modelling language MODEST incorporates aspects from process 
modelling languages and process algebras, and includes MDPs as one of the 

many formalisms, which it can express. Stochastic transition systems also 
subsume MDPs, but also permit both exponentially timed and immediate 

transitions. Unfortunately, a tool does not support them. 
A number of process algebras featuring nondeterministic and probabilistic 

choice have been introduced; reader can refer to [Probabilistic extensions of 
process algebras] for an overview of a number of these. 

3.6.2 Current status 

The GreatSPN framework provides a modular system to design and solve 

MDPN models by means of specific modules. The current status of the 
framework has been extended to incorporate uncertainty on model 

parameters, to account for real-data coming from sensors, as needed by the 

AdCoS development. 
 

 

 
Figure 33: MDPN solver Architecture 

 

Indeed, these modules transform an MDPN model expressed as a pair of 
non-deterministic and probabilistic subnets plus a reward function 

specification into an MDP model and then solve such MDP, deriving an 
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optimal strategy. To account for the uncertainty, the MDPN model formalism 
has been extended: parameters may now be expressed using intervals 

instead of exact data, and the underlying process becomes a Bounded-

parameter Markov Decision Process (BMDP). 
 

The architecture of this MDPN framework is depicted in Figure 33. The user 
must specify PNnd and PNpr subnets (in Figure 32 called Prob_net and 

ND_net) by means of the GreatSPN GUI. A special annotation is used to 
associate sets of components with transitions, and to distinguish between 

run and stop transitions. Different priorities can be assigned to transitions: 
this allows one to avoid useless interleaving when deriving the BMDP model, 

and to force a correct ordering of probabilistic or non-deterministic 
intermediate (immediate) steps. In addition, the RewardSpec file must be 

prepared: it is a textual file where the reward functions to be optimized is 
specified according to a given grammar. Rewards may also be characterized 

by uncertainty, like the other model parameters. 
 

The transformation process consists of four steps:  (1)  the non-deterministic 

and probabilistic subnets are modified by the MDPN2PN module that adds 
some places and two (timed) transitions; (2) the resulting new subnets 

(Prob_netM and ND_netM) are composed through the algebra module of 
GreatSPN; (3) from the obtained PN/WN the (S)RG is generated using the 

module MDPNRG, that produces also two files containing the list of the non-
deterministic transition sequences (the BMDP actions) and markings 

description (the BMDP states), needed to compute the value of the reward 
function associated with the BMDP states and actions; (4) module RG2MDP, 

generates the final BMDP: the states of the BMDP correspond to the tangible 
states produced by the previous module, the BMDP actions and the 

subsequent probabilistic transitions, correspond to the maximal immediate 
non-deterministic/probabilistic paths  respectively, departing from the non-

deterministic/probabilistic tangible markings and reaching probabilistic/non-
deterministic tangible markings.  

A new solver has been developed for BMDP models. In order to make the 

BMDP solution efficient, the reduction algorithm selects among the actions 
that connect the same tangible states, that with minimal (or maximal, 

depending on the optimization problem) reward value. The BMDP file is 
produced in an efficient format which is accepted in input by the BMDP 

solver module (based on the APNN toolbox library), that produces the 
optimal strategy and corresponding optimal reward value. 
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3.6.3  Integration status 

The integration of the MDP solver of GreatSPN into the HF-RTP platform was 

done in the form of a RTMaps component. The component is designed to 

take as input a set of asynchronous data flows from multiple physical sensors 
and data analysers, and produce as output the MDP strategy and the 

estimated warning level, that realize the CO-PILOT logic. 
 

Figure 34 shows the structure of the RTMaps component that contains the 
MDP solver of GreatSPN. 

 

Car State 

● position

● speed
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● … other data from sensors

Driver distraction 

● level of distraction
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Figure 34: integration of MDP in RTMaps 

The component takes as input a certain amount of data, provided by the 
sensors, the prediction of intention module and the distraction classifiers, 

that are used to generate the solution MDP. However, since data from other 
components and sensors are not synchronized (each component/sensor 

works at its functional rate), a synchronization of this information is required. 
Synchronization can be done directly using the RTMaps synchronization 

facilities, that are already implemented in the platform. At design stage, the 

estimated computation rate is of 100ms per cycle. Internally, the GreatSPN 
component keeps the last computed strategy as its state, and during each 

cycle it generates a new MDP with the updated input data, and re-computes 
the optimal strategy. The new strategy could be the same as the old 

strategy, or a new one. The output of the component is strictly related to the 
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strategy itself, and is a synthetic warning level intended for the human 
driver. 

3.7 Driver Intention Recognition (DIR) Models (former BAD MoB) 

(OFF) 

3.7.1  State of the art 

The modelling of human driving behaviour has been an extensive area of 
research in the domain of transportation systems and has been conducted 

since at least Gibson and Crook’s Field of Safe Travel Model (Gibson and 
Crooks, 1938). Despite that, no all-purpose, generic, comprehensive, and 

verifiable model of human driver behaviour has been found yet (Ranney 
1994). Different models emphasize different and sometimes very specific 

aspects of driving behaviour, like accident causation, training, behavioural 
adaptation, situation awareness, etc., and are used for many different 

purposes, including micro- and macroscopic simulation of driver behaviour, 
autonomous control, safety analysis resp. risk assessment, and manoeuvre 

resp. intention recognition. As such, “the variety of models of the driving 
task is almost as numerous as the number of authors who have contributed 

to the models” (Carsten 2007, p. 105), which renders any sufficient state of 

the art of driver modelling impossible. Due to the utilization of the BAD MoB 
models as a means of intention recognition in WP9, we will therefore focus 

on the state of the art of driver intention recognition. 
 

Michon (1985) provided an influential conceptual model for the human 
driving task, describing it as a hierarchical structured task with three levels 

of skills and control: strategical (planning), tactical (manoeuvring), and 
operational (control). At the strategic level, the general planning of a journey 

is handled, e.g., the driver chooses the route and evaluates resulting costs 
and time consumption. At the tactical level, the driver has to select 

manoeuvres, e.g., turning at an intersection or initiating a lane change 
manoeuvre. At the control level, the driver has to execute simple (and for 

experienced drivers mostly autonomous) action patterns, which together 
form a manoeuvre or behaviour. Examples are braking manoeuvres in order 

to keep a safe distance to a leading vehicle or turning the wheel to perform a 

lane-change. That said, driver intention recognition usually focusses on the 
recognition of tactical manoeuvre intentions, like e.g., lane-changes or 

overtaking manoeuvres.  
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Models for driver intention recognition can be distinguished by the underlying 

modelling technique and the input used for intention estimation. Concerning 

the modelling techniques, the state of the art in intention, resp. manoeuvre 
recognition is mostly based on Dynamic Bayesian Networks (DBNs), most 

prominently Hidden Markov Models (HMMs) and their variants, or 
probabilistic and non-probabilistic discriminative models. A comparative 

review of works on manoeuvre intention estimation can be found in Lefèvre 
et al. (2014b) and Doshi and Trivedi (2011). An additional overview can be 

found e.g., in Kobiela (2011) and Börger (2013). 
 

For intention recognition based on DBNs, in general, the basic idea can be 
summarized as follows: For each addressed manoeuvre, a distinct DBN is 

learnt that models the dynamic evolution of the vehicle state and/or position 
for the specific manoeuvre. Given a new sequence of observations, the actual 

manoeuvre intention is then estimated by comparing the likelihood of 
observations for each DBN (e.g., Oliver and Pentland, 2000, Torkkola et al. 

2005, Kumagai, 2006, Tay, 2009, and Lieber et al., 2012). To provide an 

example, Oliver and Pentland (2000) used seven distinct HMMs to recognize 
each of seven driving manoeuvres, evaluating four different combinations of 

feature vectors consisting of vehicle data, lane position information, and 
driver gaze information. On average, the resulting models were able to 

recognize the addressed manoeuvres one second before “any significant 
(20% deviation) change in the car or contextual signals” took place (Oliver 

and Pentland, 2000).  
 

For intention recognition based on discriminative (probabilistic) models, 
commonly used techniques are (non-probabilistic) Support Vector Machines 

(SVMs) (e.g., Aoude et al., 2010, Kumar et al., 2013, and Mandalia and 
Salvucci, 2005), Multi-Layer Perceptrons (MLPs) (Klingelschmitt et al., 2014), 

or logistic regressions (Garzia-Ortiz, 2010). To the best of our knowledge, 
the most sophisticated model up to date is the discriminative model 

described by Doshi et al. (2011) resp. Morris et al. (2011). They used 

Relevance Vector Machines (RVMs) for learning a model for online 
recognition of lane-change intentions, which can be seen as a Bayesian 

alternative to SVMs, in that they provide a probabilistic classification. 
According to Doshi et al. (2011), several advantages of this methodology 

motivate the use of RVMs over other algorithms, such as SVMs and HMMs. 
The RVM can sift through large feature sets and obtain a sparse data 
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representation, which is especially useful in identifying a small set of useful 
features for intention recognition. Multimodal data from various sets of 

sensors can thereby be combined easily, with the RVM automatically 

choosing discriminating cues from each modality. The resulting sparse 
representation allows for quick computation and classification in real time 

and real-world conditions with limited hardware.  
 

For driver intention recognition based on DBNs, the current underlying 
methodology has the severe disadvantage that a manoeuvre has to be 

initiated in order to be distinguishable from other hypothetical manoeuvres. 
In general, discriminative approaches don’t suffer from this weakness, which 

explains their popularity for intention recognition. However, discriminative 
models are not easily interpretable and in general cannot handle missing 

input, i.e., they are restricted to recognition rather than prediction.  
 

Concerning the input used for driver intention recognition, with the notable 
exception of Doshi et al. (2011), resp. Morris et al. (2011) and Ohn-Bar et al. 

(2014), most proposed models limit the features used for intention 

recognition to information about the driver (e.g., gaze directions), the 
vehicle state (e.g., speed and acceleration, as determined by the driver’s 

behaviour) and (seldom) potentially course information, while neglecting 
potential vehicles in the vicinity of the driver (Levèvre et al., 2014b). As a 

consequence, the proposed models are unable to give suggestions solely 
based on the external context and require that the vehicle is actually 

controlled by the human driver. 
  

Models for intention recognition in overtaking resp. lane-change scenarios 
are usually compared in respect to their prediction horizon, i.e. the time span 

between the recognition of an intention and the actual lane-crossing. Current 
models for intention prediction are sufficient to predict single specific 

behaviours of the human driver up to approx. three seconds (e.g., Garcia-
Ortiz et al., 2011, Morris et al., 2011, Doshi and Trivedi, 2008, and Lefèvre 

et al., 2014a). To give some recent examples, Ohn-Bar et al. (2014) used 

discriminative Latent-Dynamic Conditional Random Fields based on sensor 
information of vehicle dynamics, vehicles in the vicinity of the driver and 

course information, as well as sensor information of the driver to recognize 
overtaking manoeuvres. They found very good results in recognizing 

overtaking manoeuvres up to two seconds prior to the actual lane crossing. 
Bi et al (2015) proposed the use of Queuing Network-Based Driver Models, a 
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control-theoretic approach that uses a queuing network system based on 
neuroscience and psychological findings. Similar to approaches based on 

DBNs, they use the driver models to predict a set of five template 

manoeuvres (normal and emergency lane changes to the left and right lane, 
and lane-keeping) and then calculate the root-mean-square error (RMSE) 

between the actual steering angle sequence and the simulated templates. 
The most probable intention is then given by the template that minimizes the 

RMSE. From simulator studies, they report detections within 0.325 to 0.268s 
of the steering manoeuvre onset, which from a visual inspection equates to a 

prediction horizon of approx. 3.0-3.5s. 

3.7.2  MTT Description 

Bayesian Autonomous Driver Mixture-of-Behaviours (BAD MoB) models are a 
technique for modelling the human driver behavior based on Dynamic 

Bayesian Networks (DBNs). As such, they can be seen as probabilistic human 
operator models. In the context of HoliDes, BAD MoB models are used for 

driver intention recognition as a means of context assessment.  
 

As depicted in Deliverable D2.6 “Modelling Techniques and Tools Vs1.8”, we 

used simulator data to investigate both a discriminative and a generative 
approach for the use of BAD MoB models for driver intention recognition. 

Early prototypes suggested that a generative approach is more suited for the 
intended use, in contrast to the “classical” discriminative approach of BAD 

MoB models, so we focussed the further development on the generative 
approach. To reduce the risk of confusion and to prevent a dilution of these 

different approaches, we rename the resulting models for driver intention 
recognition “Driver Intention Recognition” (DIR) models. Within HoliDes, the 

DIR models are used within the MTT developed in WP3 and utilized in the 
WP9 Automotive AdCoS “Adapted Assistance”, called the Driver Intention 

Recognition (DIR) module to provide the AdCoS application with prediction 
about the intentions of human drivers. 

 

3.7.3  Current status 

Between July and November 2015, CRF conducted a driving study with 44 

participants on Italian highways near Turin to collect data for the 
development and evaluation of different non-lifecycle MTT composing the 

AdCoS “Adapted Assistance”. The participants entered the two-lane highway 
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“A55 Torino-Pinerolo” at the “SP142” entry Orbassano and exited the “A55 
Torino-Pinerolo” after approx. 15 km at the “Riva di Pinerolo” exit to return 

the same highway back to Turin. After the original entry they changed to the 

three-lane highway from Orbassano to Moncalieri for approx. 50km, exited 
and returned to the CRF location. The participants were instructed to follow 

the obligation to drive on the right lane on the two-lane highway, but were 
free to choose between the right and the middle lane on the three-lane 

highway. Once chosen, they were instructed to avoid lane changes unless 
necessary. At random moments but well in advance, a CRF employee in the 

vehicle instructed the participants to perform an overtaking maneuver once 
they felt comfortable and safe, using the indicator during the process. In this 

manner, approx. 20 overtaking maneuvers per trial were collected. The 
participants were allowed to overtake multiple vehicles at once but were 

instructed to not perform overtaking maneuvers involving more than two 
lanes. 

 
Of the resulting 44 trials, 30 trials, obtained at the end of July and during 

September, were suitable for the development and evaluation of DIR models. 

As the target scenario for the AdCoS “Adapted Assistance” and the DIR 
module focusses on two-lane highways and as file size limits rendered the 

sensor information inaccessible after approx. 15 min. of driving, we focused 
on the data of the first section of each trial, beginning with entering the “A55 

Torino-Pinerolo” at the “SP142” entry and ending when exiting the “A55 
Torino-Pinerolo” at the “Riva di Pinerolo” exit. 

 
From the available 30 trials, six were discarded for the development of the 

DIR models due to insufficient data quality or out-of-sync errors during data 
collection. For each of the remaining 24 trials, we used the data pre-

processing component of the DIR module in RTMaps to built up a database of 
experimental data used as input for learning the DIR models. We manually 

annotated each sample of the experimental data with whether the driver was 
performing a lane change to the fast lane, a lane change to the slow lane, or 

just lane-keeping driving behaviour. After this manual annotation, we 

automatically annotated each data sample with whether the driver intended 
to drive on the fast or on the slow lane, assuming that a change in the target 

lane intention was present up to one second prior to the annotated beginning 
of a lane change manoeuvre. From this annotated experimental data, we 

randomly selected 17 trials as training data (169294 samples or approx. 141 
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min of driving) and reserved seven trials for testing and evaluation purposes 
(69953 samples or approx. 58 min of driving).  

 

Given the training data, we used machine-learning methods to learn a DIR 
model to be utilized in the DIR module. In the following, let 

  denote a binary random variable with the possible values  
, representing context information in terms 

of the lane, the driver is currently inhabiting, 
  denote a binary random variable with the possible values  

 that represents the 

behavioural intentions of a driver in respect to the lane he/she intends 

wants to inhabit, 
  denote a discrete random variable with the possible values 

, representing a set 

of three potential behaviours/manoeuvres, 
  denote a continuous random variable representing the position of a 

combined acceleration-braking pedal, 
  denote a continuous random variable representing the steering wheel 

angle, 
 and  denote a set of discrete and continuous variables , 

representing a selection of perceptual features that are hypothetically 
available and important for driver intention recognition. In total, we 

considered 79 perceptual features to be potentially included in the 
model: 

o : Discrete variable representing the indicator signal. 

o : Continuous variable representing the velocity of the ego-

vehicle 

o : Discrete variable representing the speed limit, 

o : Continuous variable representing the difference between the 

speed limit and the velocity of the ego-vehicle, which we call the 
speed potential. 

o : Continuous variable representing the lateral position of the 

ego-vehicle in respect to the lane edge of the fast lane. 

o : Continuous variable representing the yaw (or heading) angle 

of the ego-vehicle. 

o : Continuous variable representing the rate of change of the 

yaw angle of the ego-vehicle, i.e. the yaw-rate. 
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For each alter-vehicle of the twelve potential vehicles in the vicinity 
of the ego-vehicle, we considered the following perceptual features, 

where X denotes a vehicle classifier (e.g., the lead vehicle): 

o : Binary variable representing the existence of a vehicle X in 

the vicinity of the ego-vehicle 

o : Binary variable, representing the area (within a distance of 

25m in respect to the ego-vehicle) a vehicle X is inhabiting 

o : Continuous variable representing the inverse time to collision 

to a vehicle X. If the ego-vehicle follows the vehicle X, the 

inverse time to collision is defined from the ego-vehicle to the 
vehicle X, and vice versa otherwise. 

o : Continuous variable representing the speed difference 

between the ego-vehicle and a vehicle X 

o : Continuous variable representing the distance headway to a 

vehicle X. If the ego-vehicle follows the vehicle X, the distance 

headway is defined from the ego-vehicle to the vehicle X, and 
vice versa otherwise 

o : Continuous variable representing the time headway to a 

vehicle X. If the ego-vehicle follows the vehicle X, the time 
headway is defined from the ego-vehicle to the vehicle X, and 

vice versa otherwise 
 

We focussed on a generative modelling approach, where the underlying 
probabilistic model is based on the assumptions of first-order Markov and 

time invariance, so that the joint probability density 
 can be factorized as: 

 

 

 
 

 

As (1) the quality of the training data was not sufficient to reliably learn 
models for predicting the control-behaviour for lateral and longitudinal 

control, and (2) such output was not planned to be used within the AdCoS 

“Adapted Assistance”, we focussed on the intention and behaviour 
recognition aspects and provided the control inputs of the driver as additional 

input features ( ), resulting in the following factorization: 
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We additionally assumed that the further factorization  

may be described in terms of a (factorized) dynamic model 

 and an observation model  and that for each 

, the exact factorization of  may differ (i.e., we assume 

the existence of context-specific independencies). As such, the resulting 
structure can be understood as a factorized Hidden Markov Model where the 

observation model  is a so-called Bayesian Multinet (see e.g., 

Koller and Friedman, 2009). 

 
Based on the learning procedure already described in D2.6, the learning task 

can be understood as feature selection, in that we try to find a suitable 
subset of  important for recognizing intentions and behaviours by learning 

a corresponding graph-structure factorizing  

and . For learning, we assumed that the 

observation models  can be factorized in terms of a naïve 

Bayesian classifier, where we allow certain variables to be conditioned by 

additional variables describing the context. Without a loss of generality, let 
 denote a set of perceptual features conditioned by  

and/or  in an observation model ,  

denote a set of not conditioned perceptual and  denote a set of 

additional parent variables, we assume that an observation model 
 can be factorized as: 

 

 
 
The parameters of each conditional probability distribution resp. conditional 

probability density (CPD) in the model were estimated from the experimental 
data provided by CRF. More specifically, let  be a discrete variable,  be a 

continuous variable, and  be a set of discrete variables. Each CPD  is 



 

HoliDes 

Holistic Human Factors Design of 

Adaptive Cooperative Human-
Machine Systems 

 

 

26/09/2016 Named Distribution Only 
Proj. No: 332933 

Page 71 of 104 

 

modelled as a multivariate distribution with the parameters given by the 
posterior mean derived from the experimental data using a Dirichlet prior 

(see Koller and Friedman, 2009) and each CPD  is modelled as a 

Normal distribution with the parameters given by the maximum a-posteriori 
derived from the experimental data using a Normal-Inverse-Wishart prior 

(see Murphy, 2012). Figure 35 shows the learned graph-structure factorizing 
, Figure 36 shows the learned graph-

structure factorizing . 

 

Within the DIR module, the model is used for online intention and 
manoeuvre recognition, which is achieved by the online-estimation or 

filtering of the belief state , i.e., the probability over intentions 

and behaviours given all contextual and perceptual evidence collected up to 

the present time . Abstracting from the finer factorization of the CPDs in the 

model, inference can be performed by the usual recursive filtering algorithm 

in state-space models (Koller and Friedman, 2009). For the first time slice 
,  can be inferred by 

 

 
 
where  is a normalization constant, so that the probabilities sum to one. For 

each subsequent time , we can use the former belief state 

 to infer  as 

 

 
 

where  is once again a (different) normalization constant. Note that 

internally, the DIR module uses the slightly more general technique of clique 
trees for performing these inferences, which however are mathematically 

equivalent. 
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Variables: 

: Intentions of the driver 

: Behaviours/manoeuvres of the driver 

: Indicator signal 

: Velocity of the ego-vehicle 

: Speed limit 

: Lateral position of the ego-vehicle in respect 

to the lane edge of the fast lane 

: Yaw (or heading) angle of the ego-vehicle 

: Yaw-rate of the ego-vehicle 

: Existence of a vehicle X in the vicinity of the 

ego-vehicle 
: The area (near or far) a vehicle X is 

inhabiting in respect to the ego-vehicle 

: Inverse time to collision to a vehicle X 

: Speed difference between the ego-vehicle 

and a vehicle X 
: Distance to a vehicle X 

 

Vehicle identifiers: 
: Lead-vehicle on the slow lane 

: Lead-vehicle of the lead-vehicle on the slow 

lane 
: Lead-vehicle on the fast lane 

: Lead-vehicle of the lead-vehicle on the fast 

lane 
: Following-vehicle on the fast lane 

: Following-vehicle of the following-vehicle on 

the fast lane 
: Lead-vehicle of the lead-vehicle on the lane 

right to the slow lane (entries, exits, and sensor 

failures) 
: Following-vehicle on the lane right to the 

slow lane (entries, exits, and sensor failures) 
: Following-vehicle on the lane right to the 

slow lane (entries, exits, and sensor failures) 
: Following-vehicle of the following-vehicle on 

the fast lane (implying the existence of a 

following vehicle) 
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Figure 35: Learned graph-structure representing . The 

additional parent  and variables not conditioned by  or  are omitted 

to improve visibility. 

 

 

Variables: 
: Intentions of the driver 

: Behaviours/manoeuvres of the driver 

: Indicator signal 

: Velocity of the ego-vehicle 

: Speed limit 

: Yaw (or heading) angle of the ego-

vehicle 
: Existence of a vehicle X in the 

vicinity of the ego-vehicle 

: The area (near or far) a vehicle X is 

inhabiting in respect to the ego-vehicle 

: Inverse time to collision to a vehicle 

X 
: Speed difference between the ego-

vehicle and a vehicle X 
: Distance to a vehicle X 

 

Vehicle identifiers: 

: Lead-vehicle on the fast lane 

: Lead-vehicle on the slow lane 

: Lead-vehicle of the lead-vehicle on 

the slow lane 

: Following-vehicle on the fast lane 

: Following-vehicle of the following-

vehicle on the fast lane 
: Following-vehicle on the slow lane 

: Following-vehicle of the following-

vehicle on the lane left to the fast lane 

(due to sensor errors) 

Figure 36: Learned graph-structure factorizing . The 

additional parent  and variables not conditioned by  or  are omitted to 

improve visibility. 
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As reported in Deliverable 9.9 “Empirical Evaluation of the Automotive AdCoS 

and HF-RTP Requirements Definition Update (Feedback)” (D9.9), the learned 
models have been successfully integrated into the Automotive AdCoS 

“Adapted Assistance”. Based on evaluations of independent test sets, the 
learned models extend the required accuracy of approx. 80% with an 

accuracy of 0.908 and provide a mean predictive horizon of 4.19s in the 
most conservative case, which is significant larger (p = 2.618-11) than the 

current state of the art of approx. 3.0s (for details, please refer to D9.9). 

3.7.4  Integration status 

The DIR models are used within the DIR module, a MTT developed in WP3 
and WP9 utilized in the Automotive AdCoS “Adapted Assistance”. As the DIR 

module is a non-lifecycle tool, integration via OLSC has not been realized. 
Instead, the DIR module has been successfully implemented in terms of 

RTMaps packages, providing sets of RTMaps components that can be used 
for AdCoS modelling and utilization in RTMaps. Using RTMaps, the DIR 

module has been successfully integrated into the AdCoS “Adapted 

Assistance” and has been tested on the CRF demonstrator vehicle and in the 
REL driving simulator used for AdCoS evaluation. 
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Figure 37: (Simplified) overview of the DIR module integrated in RTMaps, arranged 

to highlights RTMaps components for the Data Pre-Processing and Inference 

Engine of the DIR module. 

Figure 37 shows an overview of the DIR module modelled in RTMaps, 

connected to an RTMaps player that provides the experimental data obtained 

in the CRF demonstrator vehicle. Different DIR models can be selected to be 
used within the component DIR_INFERENCE_ENGINE. For utilization of the 

DIR module in the final AdCoS “Adapted Assistance”, the player is replaced 
by RTMaps components providing sensor information in real-time. Note that 

components dedicated for visualization of the DIR module have been 
removed to reduce clutter. Figure 38 shows a screenshot of the DIR module 

during runtime (using pre-recorded experimental data provided by CRF), 
where the top left image shows a visualization of the data pre-processing 

component for enhancing the available sensor input and classification of 
vehicles in the vicinity of the ego-vehicle, the top right image shows the on-

board camera installed on the CRF demonstrator vehicle, and the bottom 
shows a visual and textual summary of the output of the DIR module. 
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Figure 38: Example of driver intention recognition module in RTMaps. In this 

example, the intention to perform a lane change to the left (bottom, orange line) is 

recognized approx. 1 sec prior to the activation of the indicator (bottom, red line). 

 

3.8 Cognitive Distraction Classifier (TWT) 

3.8.1  State of the art 

Distraction is one of the most frequent causes for car accidents (Horberry et 
al., 2006). During driving, it leads to a delay in recognition of information 

that is necessary to safely perform the driving task (Regan and Young, 
2003). Four different forms of distraction are distinguished while they are not 

mutually exclusive: visual, auditory, bio-mechanical (physical), and cognitive 

distraction. While visual and bio-mechanical distraction can be directly 
observed (e.g. glancing in the rear mirror), cognitive distraction cannot be 
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directly observed since there is no direct indicator of this process (Liang et 
al., 2008). While several approaches are suited to measure cognitive 

distraction, only some of them are applicable for real-time assessments: 

driving performance (driving dynamics like speed variability as well as driver 
interactions like breaking), physiological measures like eye, head or facial 

movements (Metaxas et al., 2004, Recarte et al. 2000; 2003; 2008), and 
analysis of the voice (Kurniawan et al., 2013). 

The identification of cognitive distraction is more complex than that of visual 
distraction for two reasons. First, because the mechanisms involved in the 

former have not been described as precisely as that of the latter. Second, 
because there is no direct indicator of cognitive distraction. The detection of 

cognitive distraction could presumably be best assessed through the 
integration of a number of different parameters like eye and face measures 

of the driver (e.g., blink frequency, pupil size, mouth movements), driving 
performance measures (e.g., steering wheel movements and breaking 

behaviour), and auditory signals (e.g., the sound of the driver’s voice).  Yet, 
some of the parameters need careful experimental design. For example, 

mouth opening (yawning) is often taken as a sign of fatigue (Abtahi et al., 

2011), but in real driving scenarios, mouth opening can be associated with 
an ongoing conversation or with singing along to a song in the radio. A 

combination of several parameters, for example driving performance and 
mouth opening, might be able to avoid such misattribution (Dong et al., 

2011). 
Several models for cue integration have been suggested for cognitive 

modelling of distraction. Machine Learning techniques are a promising 
approach to investigate several parameters simultaneously (Liang et al. 

2007a, b; Zhang et al., 2004). This characteristic is of high importance since 
it has been shown that changes in the correlation between e.g. eye tracking 

data and behavioural data can indicate driver distraction (Yekhshatyan et al., 
2013). A further crucial advantage of machine learning is that it is adaptive 

to individual drivers (Zhang et al., 2004).  In the context of machine 
learning, Support Vector Machines (SVMs) and Bayesian Networks have 

successfully identified the presence of cognitive distraction using eye 

movements and driving performance (Liang et al. 2007a, b). 
The recent dynamic Bayesian model by Liang and Lee (2008) consists of a 

combined supervised and unsupervised learning approach. In HoliDes, we 
investigate these approaches, employing different types of data (such as 

facial video data).  
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3.8.2  MTT Description 

The main idea of the Cognitive Distraction Classifier (CDC) has been 

described in detail in previous deliverables (e.g., in D2.6, D5.5, D3.7). To 

avoid redundancy, only a short overview will be provided here. 
In the context of HoliDes, TWT developed an applied cognitive and 

computational cognitive distraction model using different in-car measures 
(including audio recordings, video face tracking, and behavioural driving 

parameters) to detect the distraction degree of the driver. 
The model takes the driver’s auditory and visual perception into 

consideration and computes his/her distraction degree based on a resource 
allocation model. This model from Wickens (2002) states that the more a 

secondary task takes up the same or similar sensory modalities (auditory vs. 
visual), codes (visual vs. spatial) and processing stages (perceptual, 

cognitive, responses), the more the secondary task leads to distraction from 
the primary task. Thus, using the in-car measures, the model will lead to 

conclusions about the allocation of the driver’s resources and therefore 
enable the computation of his distraction degree. The CDC can be used 

offline (i.e., post-experimental) or online (i.e., near-to-real-time). During 

online use, it will provide a continuous interpretation of the cognitive 
distraction degree computed by a machine learning classifier. The cognitive 

distraction degree will be identified within a time window of about two 
seconds. Several machine learning algorithms (Naïve Bayes, Adaptive 

Boosting, different kinds of Discriminant Analyses) have been evaluated 
based on an offline analysis of the data. Moreover, different combinations of 

the feature sets (Audio, Video and Behavioral) have been tested in order to 
design a proper feature space. The results of the offline analyses mostly 

serve to test and develop analysis methodology and measurement 
techniques, and as a validation for the online cognitive model. 

 
The idea behind the CDC was to use it online to classify the driver’s cognitive 

distraction not only during testing of a prototype, but also during everyday 
interaction with the AdCoS. This online measure of cognitive distraction could 

in turn be used to adapt the degree of automation of the AdCoS to the 

driver’s cognitive state. Additionally, a safety system could adapt in an 
appropriate way to a certain level of cognitive distraction. Furthermore, for 

the integration of the tool into the HF-RTP, its usage during the system 
validation phase is essential: while interacting with a prototype or some 

modules of the AdCoS, the operator’s degree of cognitive distraction can be 
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determined. Thus, in this context the tool provides feedback whether or not a 
new system (module) increases or decreases the operator’s degree of 

cognitive distraction.  

 

3.8.3  Current status 

In recent experiments, data have been recorded from participants driving in 
a driving simulator while being cognitively distracted through a secondary 

task, namely the n-back task. Video data of the driver’s face, behavioural 
driving data, and aural (voice) data have been extensively analysed offline. 

With certain pre-processing techniques, the signal-to-noise ratio was 
enhanced, and facial features (e.g. eye blink frequency) and driving features 

(e.g., distance to the pace car, steering jitter) have been extracted. Machine 
learning algorithms have been deployed and tested for their applicability to 

classify whether a driver is undistracted (U), slightly distracted (D1) or 
strongly distracted (D2) given these features. These three level of distraction 

correspond to the three levels of the chosen n-back task (0-back, 1-back, 2-
back) The machine learning classifier first builds a model based on a set of 

features (e.g. eyebrow position) derived from an experimental training 

dataset of which the operator state is known since it was modulated using 
the n-back task. This model-training phase is carried out with a k-fold cross-

validation method. Next, the classifier model can be used to classify the 
current driver’s state as undistracted, slightly distracted or strongly 

distracted based on the features from a dataset of which the CDC does not 
know the operators’ state. Recently, the offline classification software has 

been redeveloped to allow for online analysis. 
 

TWT has been investigating employing audio voice data to determine the 
level of the driver’s cognitive distraction. Similar to the video data, the audio 

data are being analyzed based on a selection of relevant features. Currently 
audio features are being implemented to be used by the machine learning 

algorithms. In future versions of the CDC, both audio, video, and eye-
tracking features will be jointly used to classify the data and to determine 

the degree of cognitive distraction of a subject. The most recent testing done 

by TWT, involved a new online version of the CDC.  
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3.8.4 Integration status 

The metrics used to quantify the driver’s distraction based on in-car 

information are developed in T5.2. The cognitive distraction classifier (CDC) 

has been integrated into the IAS Test Vehicle (WP9). Vehicle data are 
transmitted from the Ibeo car to the CDC via Ethernet. The CDC output 

(estimated level of distraction and estimation reliability value) is written to 
the vehicle CAN, where it is available to the Ibeo autonomous driving 

system. During periods of increased distraction, autonomous driving can be 
adapted towards a more defensive style. A first experiment with the IAS Test 

Vehicle has just been conducted. 
Further WP9 AdCoS systems suitable for integration with the CDC are the 

TAK Simulator AdCoS and potentially the CRF Test Vehicle. TWT has been 
working towards an integration with TAK, and conducted joint experiments 

(for details, see D5.6) 
 

Next steps include continuation of collaboration with partners to integrate the 
CDC in AdCoS, such that the level of automation can adapt to the cognitive 

state of the driver, or a safety system can interact with the driver in an 

appropriate way. The integration will also allow us to validate the CDC 
outside of a simulated environment and access its accuracy during driving in 

the real world (see D9.10). Further steps are the increase of accuracy for the 
online version of the CDC and the integration of multiple signals, e.g. 

auditory signals. 
 

3.9 Pilot Pattern Classifier (TEC) 

3.9.1  State of the art 

The relationship between situation awareness, mental workload, and 
performance has been studied in (Nählinder, 2004, 2009; Garland, 200), 

showing that increasing the mental workload (e.g., with a more demanding 
task) could lead to a decrease in situation awareness, which could lead in 

turn to worsen performance. 
The analysis of EEG signals has been used in the assessment of the 

variations of the state of the subjects during the execution of cognitive or 

sensory-motor tasks, as it is shown in Smith et al. (2001) and Boucsein et 
al., (2000). It has been also demonstrated (Matousek et al., 1983; Gevins et 

al., 1990) that EEG is sensitive to variations in vigilance and has been shown 
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to predict performance degradation because of sustained mental work. On 
the other hand, it was discovered by Gale et al. (1977) that a decrease in 

vigilance and deterioration in performance are connected with an increased 

EEG power spectra in theta band and a change in EEG alpha power. Many 
studies on EEGs extracted from aircraft pilots were focused on variations in 

the power of EEG signals in the theta, alpha and beta bands (Dahlstrom et 
al., 2009; Poythress et al, 2006, Berka et al., 2007 and Dussault et al., 

2005).  
One of the most famous artificial intelligence techniques to build classifiers 

working with EEG data is Artificial Neural Networks (ANN). Wilson et al. 
(2003a) reported achieving, on average, 85.8% classification accuracy for 

ANNs trained on within-difficulty manipulation types. Wilson et al. (2003b) 
used ANNs to classify operator state on a multi-task combination. In this 

case, heart rate (HR), respiration and eye movement measures were used in 
addition to EEG as ANN inputs resulting in classification accuracies that were 

98.5% on average across participants and achieving online classification 
accuracies ranging from 82%, in the low workload condition, to 86% in the 

high workload condition. 

However, the workload classifiers presented above are subject-specific, that 
means a new classifier should be trained for each subject and session. In 

addition, these classifiers do not achieve good results when classifying a 
group of subjects with the same training dataset and also the same subject 

in different sessions (Wilson et al., 2010). Under these circumstances, Wang 
et al. (2012) showed that it is possible to build a classifier based on the 

hierarchical Bayes model, handling multiple subjects achieving classification 
accuracies comparable to a specific-subject ANN. Here is also proved that 

such a performance is stable across three levels of workload, in comparison 
with ANNs which have been demonstrated to accurately separate no more 

than two levels of workload. 
On the other hand, we can find other researches in which the Support Vector 

Machines technique (SVM) is used to achieve good results on this field. 
Borghini et al. (2011) carried out a study on a large sample of aircraft pilots, 

which was built on theta and alpha frequency increase/decrease ratios with 

respect to a baseline condition, was demonstrated to correlate with the 
pilot’s reports on the difficulty of the task performance. 

Other techniques such as Random Forest Classifiers (RFC) have been used to 
identify the sleep stage using EEG data (Fraiwan et al., 2012). 
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After reviewing the current literature, it can be concluded that the accuracy 
of the offline detection of the mental states in driver/pilot using EEG, electro-

oculogram (EOG) and Heart Rate (HR) is close to 90%. 

Some related research works have been carried out lately. This is the case of 
Dai et al. (2015) in which they worked on cognitive workload discrimination 

of pilots during flights, or (Bezerianos et al., 2015) where the study aims to 
look at the difference in coupling of EEG activity of participant pairs while 

they perform a cooperative, concurrent, independent yet different task at 
high and low difficulty level. Also Causse et al. (2015) EEG measurements 

related to instructions showed that increased mental workload was 
accompanied by lower P3b amplitude. Finally, Johnson et al. (2015) probe-

independent algorithms are explored for classifying three levels of task-
complexity in a flight simulator experiment. 

With respect to the other works presented in the literature, the workload 
classifier herein presented exploits EEG and eye-tracking data coming from 

an ad-hoc designed experiment that has been proved to induce cognitive 
workload effects in a preliminary phase. With the aim of finding a suitable 

technique that allows a system in the cockpit to be adapted and react as fast 

as possible depending on the pilots’ data, this work proposes the use of RFC 
and k-Nearest Neighbours (k-NN) as supervised classification techniques, as 

opposed to ANN and SVM which are techniques usually characterized by 
higher computational costs. Although this work considers an offline scenario, 

this is a relevant issue when running on online systems, which motivates 
undertaking this scenario in future stages of the HoliDes project. In other 

words, we search for balancing a trade-off between computational cost and 
acceptable classification ratios. On the other hand, and as opposed to the 

majority of the researches mentioned in this section, this work recommends 
and encourages adopting performance scores used in multiclass and 

imbalance classification problems, such as macro averaged precision and 
macro averaged recall, beyond the conventional accuracy metric. 

3.9.2  MTT Description 

Pilot Pattern Classifier tool evaluates a pilot’s physiological data and infers 

performance related properties, e.g. workload and fatigue. As fatigue is a 

complex term, it is expected that there will be a larger number of sensors for 
fatigue detection in various bio-signals. The system starts with EEG and eye-

tracking sensors, but it is expected to be extended in future.  
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As a pattern, the indication of raised fatigue is detected and sent as a 
context annotation to the diversion assistant. As a reaction, the adaptation 

follows two lines. In the first, the calculation strategy will prefer safety over 

economy in evaluating the diversion options. It means that airports with 
easier approach and landing, with better supporting infrastructure or airports 

the crew is more familiar with will be selected rather than those that are 
more suitable with respect to fuel savings or service prices. 

3.9.3  Current status 

Due to the complexity of fatigue detection, the pilot state classifier has been 

developed as a proof of concept processing/evaluating its data offline. In 
future developments it will be faced the online challenge. Is it possible to 

establish the workload level of a pilot on the basis of EEG and eye tracking 
data? This is the question that HON, TEC and SNV are investigating.  

 
The Pilot Pattern Classifier (PPC) is a machine learning tool that, when in the 

classification phase, is able to timely recognize the workload level of the pilot 
on the basis of EEG and eye-tracking information. In the training phase, PPC 

needs to be trained in a supervised fashion, i.e., it needs to be fed with a 

labelled dataset providing examples of EEG and eye-tracking data associated 
with different (and explicitly indicated) workload conditions.  

Along the road towards the solution, three main phases were identified:  
 

1. Data collection: The first challenge addressed, indeed, was to gather 
the labelled dataset. SNV was in charge of such an activity, to be faced 

by applying the methodology of experimental analysis of cognitive and 
communication processes.  

2. PPC prototype implementation: Once collected the data, the PPC 
implementers (TEC, HON) was in charge of designing the best suitable 

machine learning tool able to leverage the provided dataset to the aim 
of the online detection of the workload level. A proof-of-concept 

prototype was the output of that phase.  
3. PPC performance evaluation: The performance of the developed 

prototype was assessed in order to establish if the PPC challenge was 

reached or not.  
 

At the time of writing, Phase 1, Phase 2 and Phase 3 have been completed. 
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THE EXPERIMENTS 
  

The first problem was to design an experiment where it was possible to 

measure the workload effects. The cognitive workload can be defined as a 
condition that can be revealed by the worsening of performance measures in 

a primary task due to a secondary interfering task (Goldberg, 1998).  
Typically, it has been studied experimentally by means of the dual task 

paradigm where the performances are measured in terms of response times 
in the execution of both the primary and the secondary task.  

According to that, SNV designed a dual-task paradigm experiment conceived 
to show the workload effects on directed attention processes, such those that 

are involved when controlling a cockpit.  
 

SNV performed this experiment twice: the first time without recording EEG 
and eye-tracking data and the second time recording them. This 

methodology is due to the fact that we want first to prove that we are able to 
induce different workload effects by controlling the conditions of the 

experiments. Only then, we have replicated the experiment by adding the 

EEG and eye-tracking recording and we exploited the findings of the previous 
analysis to label the collected data.  

Experiments were based on a dual task paradigm in which participants 
involved in a primary visual search task were asked to perform also a 

secondary interfering task represented by the syntactical transformation of a 
sentence. Different types of transformation were tested to see the different 

workload effects. The results of the first round of the experiments, run with 
20 students of the Suor Orsola Benincasa University, showed that three well 

distinct workload effects (low – LW, medium – MW, and high – HW) 
appeared according to the type of the requested syntactical transformation 

(condition) of the secondary task. Further details about the experiment and 
about the results are provided in D3.6, Section 3.1. Once proved to be able 

to discriminate between different workload levels, SNV repeated the same 
experiment by recording also EEG and eye-tracking data. 
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Figure 39: Example of materials used in a visual search task 

 

 

 

Figure 40: Position of the electrodes in the PPC experiments 

 

To the aim of the synchronization of the EEG data with the eye-tracking data 
and the data about the execution of the primary task (digit pressure on the 

keyboard), the RTMaps platform was provided by INT to SNV. INT provided 
support to SNV in the development of the RTMaps script needed to perform 

the synchronized data collection work.  



 

HoliDes 

Holistic Human Factors Design of 

Adaptive Cooperative Human-
Machine Systems 

 

 

26/09/2016 Named Distribution Only 
Proj. No: 332933 

Page 86 of 104 

 

 
DATA COLLECTION 

 

The RTMaps output dataset needs to be completed with further information 
coming from DMDX and needed for the labelling: to this aim, a dedicated 

DMDX parsing program has been developed and applied. In July 2016 a new 
set of experiments were carried out in Berlin; this will lead us to new 

experiments and to keep working in our approach, probably facing the online 
detection challenge and flourishing new collaborations between partners.  

  
To date, the data performed by the experiments of two subjects were 

exploited to realize the prototype: 
 

 Data set “RecFile_2_20151117_113258_Vectorizer_2_outputFloat” for 
the user 1 (from now on it will be named “Data set-113258”)  

 Data set “RecFile_2_20151117_122030_Vectorizer_2_outputFloat” for 
the user 2 (from now on it will be named “Data set-122030”)  

 
These data sets were supervised, they showed the specific label for each 

sample. In our case the possible labels for the class were 3 (multiclass): 
low workload (LW), medium workload (MW), and high workload (HW). 

 
Table 3: Legend of the collected data 

Feature Description 

timestamp time step id, microseconds 

alpha_1 alpha power from channel 1 – position P3, micro Volt^2 

alpha_2 alpha power from channel 2 – position F3, micro Volt^2 

alpha_3 alpha power from channel 3 – position Pz, micro Volt^2 

alpha_4 alpha power from channel 4 – position FP1, micro Volt^2 

alpha_5 alpha power from channel 5 – position Fz, micro Volt^2 

alpha_6 alpha power from channel 6 – position FP2, micro Volt^2 

alpha_7 alpha power from channel 7 – position F4, micro Volt^2 

alpha_8 alpha power from channel 8 – position P4, micro Volt^2 

theta_1 theta power from channel 1 – position P3, micro Volt^2 

theta_2 theta power from channel 2 – position F3, micro Volt^2 

theta_3 theta power from channel 3 – position Pz, micro Volt^2 

theta_4 theta power from channel 4 – position FP1, micro Volt^2 

theta_5 theta power from channel 5 – position Fz, micro Volt^2 
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theta_6 theta power from channel 6 – position FP2, micro Volt^2 

theta_7 theta power from channel 7 – position F4, micro Volt^2 

theta_8 theta power from channel 8 – position P4, micro Volt^2 

r_eye_clos right eye closure, % 

l_eye_clos left eye closure, % 

r_eye_clos_conf right eye confidence, % 

l_eye_clos_conf left eye confidence, % 

eye_clos_calib eye closure calibration, % 

r_pup_dmt right pupil diameter, mm 

l_pup_dmt left pupil diameter, mm 

keyboard virtual key code of the last pressed digit 

item_nr id number of the current experiment “item”, where the item is the couple 
of the current visual search task and the current transformation task 

condition condition  can be:  

0 ==> control 
1==> from active to passive 
2 ==> from passive to active 
3 ==> ambiguous phrases 

vis_search 0 ==> visual search of the current item has not started yet; 

1 ==> visual search of the current item has started 

on_keyboard 0 ==> the keyboard has not been pressed yet in the current item 
1 ==> the keyboard has been pressed in the current item 

label Workload level of the item condition:  
LW ==> low 
MW ==> medium 
HW ==> high 

corr Correctness 
0 => wrong 
1 => both tasks performed correctly (spatial transformation and visual 
search) 

 

MODEL CONSTRUCTION 
 

The model for the Pilot Pattern Classifier was developed in Python, using 
some machine learning libraries such as sklearn, and some other scientific 

libraries such as numpy, pandas, scipy. 

 
ANN (Artificial Neural Networks) and SVM (Support Vectors Machine) are well 

known techniques applied to EEG data obtaining good results in binary 
problems. In our case, however, we dealt with a multiclass problem. We 

used the RFC and k-NN. Both of them are usually applied to multiclass 
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problems. We performed different tests by combining different weights for 
each class (due to the imbalance problem of the data sets), and by trying 

with several parameters of the RFC (such as the number of trees, the depth, 

etc.). We achieved the best results with k-NN when k=3. We used the 
stratified cross-validation procedure to test the model in order to avoid over-

fitting. 
 

The final model was based on the Nearest Neighbours (k-NN) technique 
(with these parameters: k=3), and used 75% of the data sets for training 

and 25% for testing, using stratified cross-validation.  
 

 
MODEL EVALUATION 

 
When dealing with binary classification, the accuracy of the classification 

results should be evaluated in terms of standard classification metrics 
such as precision, recall, and F-score. On the other hand, when dealing with 

a multiclass classification problem, like the one we were considering, 

other metrics should be taken into account, like micro and macro averaged 
scores. Accuracy is sometimes quite misleading, as you may have a model 

with relatively 'high' accuracy predicting the 'not so important' class labels 
fairly accurately but not the classes that are actually critical to the 

application. In our case, we treat all classes equally, thus our metrics were 
(i) macro averaged precision, (ii) macro averaged recall, and (iii) 

macro averaged F-score.  See Sokolova et al. (2009) for further 
information. 

 
RESULTS 

 
In our first approach we trained and tested each single model just to know 

the individual classification performance, and we found F-score ratios close 
to 0.99. Being aware of the over-fitting problem in these cases and that this 

was not conclusive because we were looking for transfer learning, we 

proceeded with the following approaches. 
 

For the second approach, we applied each of the single models to the rest 
of users trying to find a universal user that could transfer their model to the 

rest. We concluded that user19’s model achieved an average F-score of 
0.312 for all the users, so we can conclude that this is not enough to 
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consider him as universal to transfer his trained model to the rest. In 
contrast, the less universal model belonged to user2 with an average F-score 

of 0.207. 

 
At this point it made sense to go on with our third approach, in which each 

user was used once as a test set while the remaining samples formed the 
training set to build a unique model. In this case we obtained a global 

average F-score of 0.332. It showed a better score than the second approach 
but still unsatisfactory from a transfer learning point of view.  

The following table shows in detail the classification performance ratios per 
label, and we can see that MW showed better ratios (recall the number of 

MW samples were bigger than LW and HW), despite the models were trained 
in a balance mode. 

 
Table 4: Classification performance per label of the third 

approach, where each user (1-21) was used once as a test set 
while the remaining samples formed the training set (P=macro 

averaged precision, R= macro averaged recall, F= macro 

averaged F-score) 

 LW MW HW 

 P R F P R F P R F 

1 0,18 0,23 0,20 0,71 0,62 0,66 0,08 0,10 0,09 

2 0,12 0,17 0,14 0,66 0,56 0,61 0,04 0,05 0,05 

3 0,23 0,08 0,12 0,67 0,84 0,75 0,09 0,05 0,07 

4 0,15 0,18 0,16 0,69 0,68 0,68 0,17 0,15 0,16 

5 0,11 0,11 0,11 0,72 0,75 0,74 0,23 0,20 0,21 

6 0,14 0,12 0,13 0,67 0,73 0,70 0,18 0,14 0,16 

7 0,12 0,22 0,16 0,72 0,66 0,69 0,23 0,14 0,17 

8 0,11 0,10 0,10 0,71 0,68 0,69 0,19 0,25 0,21 

9 0,22 0,21 0,21 0,68 0,69 0,68 0,13 0,12 0,12 

10 0,25 0,16 0,19 0,70 0,78 0,73 0,18 0,16 0,17 

11 0,17 0,16 0,17 0,69 0,64 0,66 0,17 0,23 0,20 

12 0,14 0,20 0,17 0,69 0,68 0,68 0,14 0,09 0,11 

13 0,19 0,30 0,23 0,70 0,67 0,68 0,07 0,05 0,06 

14 0,22 0,35 0,27 0,72 0,54 0,62 0,15 0,22 0,18 

15 0,23 0,25 0,24 0,71 0,68 0,69 0,17 0,19 0,18 

16 0,06 0,04 0,05 0,69 0,76 0,72 0,14 0,13 0,14 

17 0,05 0,06 0,05 0,69 0,64 0,66 0,19 0,21 0,20 
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18 0,16 0,14 0,15 0,69 0,75 0,72 0,21 0,14 0,17 

19 0,20 0,16 0,18 0,71 0,72 0,72 0,19 0,23 0,21 

20 0,12 0,11 0,12 0,68 0,68 0,68 0,20 0,21 0,20 

21 0,12 0,11 0,11 0,71 0,70 0,70 0,21 0,23 0,22 

 

Trying to transform the problem into a binary one in our fourth approach 
looking for two different perspectives: 

 Firstly, leaving LW (class value 0) as one of the possible values for the 

target class, and joining MW and HW (class value 1) as the other value 
for the target class. 

 Secondly, leaving HW (class value 2) as one of the possible values for 
the target class, and joining MW and LW (class value 1) as the other 

value for the target class. 

After that, none of them showed good classification performance ratios, 
resulting that LW and HW obtained similar ratios to Table 4. 

 
Finally, we decided to divide each data set into three sessions of 4 minutes, 

in order to try the same approaches than before. Firstly, we trained a model 

with a session and tested it with another session of the same user, and 
secondly we made training and testing processes between users’ sessions. In 

both approaches we could not find a global model to be applied to the rest of 
users with good classification performance ratios. 

 
CONCLUSIONS AND FUTURE WORK 

 
As Borghini et al. (2012) reflect in their review, the difficulty in this field of 

study lies in the fact that different mental workload levels could correspond 
to the same driving behaviour, above all when different users are involved in 

the training process. Some of the existing workload classifiers are subject-
specific, meaning a new classifier has to be trained for each subject and 

session. Some reasons are explained in this paper: 
 

1. It can be seen that the cortical prefrontal areas engagement within the 

theta frequency band results from the contrast between the two groups 
of subjects estimated activity indicating that pilots who were naïve to 

the task relied on the engagement of this area to accomplish it (expert 
and naïve subjects). Moreover, such differences in the estimated 
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cortical activity were correlated to the different mental efforts required 
by the operational task. 

 

2. Rhythms Theta activity increases in the frontal midline with increased 
task difficulty in younger adults, and to a lesser degree in middle-aged 

individuals, whereas no increase has been found in older subjects. 
Alpha activity, in turn, decreases with increasing task difficulty in more 

widespread areas in older than in younger subjects, whose alpha 
activity decreases only at the parietal areas. These findings are in good 

accordance with a previous study that showed an increase in theta 
activity in the young and a decrease in alpha activity in the elderly 

during challenging task performance. 
  

In fact, these tools do not achieve good performances when classifying a 
group of subjects with the same training dataset and also the same subject 

in different sessions. Here it seems that it would be necessary a tailored 
model for each pilot. The technique k-NN has revealed itself as really 

appropriate dealing with EEG data eye-tracking data. 

 
This research has not been able to find a direct transfer learning. Statistical 

distribution of the data varied across subjects as well as across sessions, 
even within individual subjects, limiting the transferability of our trained 

models between them. In addition, the EEG signal is non-stationary, and this 
is another problem that we should face in our future experiments. As future 

work, we plan to find some structure in the data that is invariant across 
datasets (Domain adaptation approach) or some structure in how the same 

decision rules differ between different subjects or sessions (Rule adaptation 
approach). In the long term, the HoliDes project will also analyse the 

possibility of applying our models in an online fashion. 
 

On the other hand, due to the complexity of fatigue detection, the pilot state 
classifier will be developed as a proof of concept processing/evaluating its 

data offline. In the long term, the HoliDes project will start working on the 

field of the online mode, which is a relevant challenge nowadays. 

3.9.4  Integration status 

Data flow full treatment chain and its interfaces are shown in Figure 41. 
RTMaps is the central tool to gather data from other tools using its dedicated 
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interface. Each other data consumer/provider needs to develop a connector 
to read or send data. The experiment database is connected via a 

bidirectional interface to allow for data storage and data playback. Tools 

selected for pilot state assessment work on sensor data streamed from 
sensors to the tools. These tools either write their results back to RTMaps for 

data storage in the database or publish the data in a standard form for other 
consumers. The DivA AdCoS can be one of the consumers when being 

deployed. During the development, however, the DivA AdCoS connects to 
RTMaps instead.  

Selected tools define two different ways about how they can be connected 
into the instance of RTP – either as part of RTMaps platform or as OSLC 

provider/consumer. 
 

 
Figure 41: DivA AdCoS data flow and full treatment chain. RTP tools are in 

green, others in blue. Interfaces (black circles) are described with data 

transferred through interface and direction (one- or two-way arrows). 

 
For the Pilot Pattern Classifier has been packed as an executable file (in 

which the AI model is embedded) to make easier the integration with the 
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rest of tools, and for future developments. This program reads the test data 
set (from the same folder in which the program is deployed or from a 

customized path) which is a “csv” file (maintaining the same structure and 

features than in the training phase, of course).  
Then, the program will write the prediction (and its probability) of the test 

data set in a “csv” file with 2 two fields: 1) prediction (LW-MW-HW), and 2) 
the probability (%) of each prediction. Finally, this file will can be read by 

RTMaps and introduced into the full treatment chain, as it is shown in Figure 
41. 

3.10 Djnn (ENA) 

3.10.1 MTT Description 

djnn (available at http://djnn.net) is a general framework aimed at 
describing and executing interactive systems. djnn comes with dedicated 

languages (based on C, C++ or perl) that allows designers of application 
team to specify a user interface including details independent of modalities 

(usually called AUI: Abstract User Interface) and details related to modalities 
(CUI: Concrete User Interface). Designers develop their own djnn 

components which can be compiled into object files or directly through XML 

format. 
 

djnn provides also a specific platform dedicated to support execution of 
applications: the djnn interpreter can be compared to a Java virtual machine, 

and the djnn XML format to Java byte code. In both cases, executable 
programs are loaded in memory and run by an interpreter. In this context, 

the traditional toolkit API of djnn can be considered as an alternative byte 
code format: components are either stored in XML or in compiled object 

code. 
 

During the last period, main evolutions of Djnn have been done in the 
context of WP4 and are related to formal verification and simulation. In order 

to avoid text duplication, the reader is referred to D4.7 where they are 
detailed. 
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Figure 42: Djnn platform architecture 
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4 Summary 

In the introduction, it was depicted why model-based approaches are 
essential to facilitate the development of Adaptive and Cooperative Systems. 

Further, it was described which WPs of the HoliDes project contribute to this 
goal and how they interact: Objective of WP2 is to develop modelling 

languages that support the modelling of adaptive and cooperative Systems 
(AdCoS) as well as editors for the specification of these models. This models 

support the modelling of AdCoS used in WP6-9, the implementation of the 
adaptiveness of the AdCoS themselves in WP3, the guidance of empirical 

evaluation methods and design of AdCoS in WP5 as well as the formal 
verification in WP4. Moreover, they also contribute to the common meta-

model of the HF-RTP in WP1. 
In the subsequent section, an overview of the recent updates of the Task 

Model, Resource Modelling Language, Human-Machine Cooperation 
Modelling, Human Operator Models and HMI Models was presented. 

In section three, the MTTs of WP2 have been shortly described and their 

value was explained in the context of the state of the art in this field. Their 
current development state as well as their integration state have been 

depicted.  
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